Lineare Abbildung

Aus testwiki
Zur Navigation springen Zur Suche springen
Achsenspiegelung als Beispiel einer linearen Abbildung

Eine lineare Abbildung (auch lineare Transformation oder Vektorraumhomomorphismus genannt) ist in der linearen Algebra ein wichtiger Typ von Abbildung zwischen zwei Vektorräumen über demselben Körper. Bei einer linearen Abbildung ist es unerheblich, ob man zwei Vektoren zuerst addiert und dann deren Summe abbildet oder zuerst die Vektoren abbildet und dann die Summe der Bilder bildet. Gleiches gilt für die Multiplikation mit einem Skalar aus dem Grundkörper.

Das abgebildete Beispiel einer Spiegelung an der Y-Achse verdeutlicht dies. Der Vektor c ist die Summe der Vektoren a und b und sein Bild ist der Vektor c. Man erhält c aber auch, wenn man die Bilder a und b der Vektoren a und b addiert.

Man sagt dann, dass eine lineare Abbildung mit den Verknüpfungen Vektoraddition und skalarer Multiplikation verträglich ist. Es handelt sich somit bei der linearen Abbildung um einen Homomorphismus (strukturerhaltende Abbildung) zwischen Vektorräumen.

In der Funktionalanalysis, bei der Betrachtung unendlichdimensionaler Vektorräume, die eine Topologie tragen, spricht man meist von linearen Operatoren statt von linearen Abbildungen. Formal gesehen sind die Begriffe gleichbedeutend. Bei unendlichdimensionalen Vektorräumen ist jedoch die Frage der Stetigkeit bedeutsam, während Stetigkeit immer vorliegt bei linearen Abbildungen zwischen endlichdimensionalen reellen Vektorräumen (jeweils mit der euklidischen Norm) oder allgemeiner zwischen endlichdimensionalen hausdorffschen topologischen Vektorräumen.

Definition

Seien V und W Vektorräume über einem gemeinsamen Grundkörper K. Eine Abbildung f:VW heißt lineare Abbildung, wenn für alle x,yV und aK die folgenden Bedingungen gelten:

Die zwei obigen Bedingungen kann man auch zusammenfassen:

f(ax+y)=af(x)+f(y)

Für y=0V geht diese in die Bedingung für die Homogenität und für a=1K in diejenige für die Additivität über.

Eine weitere, gleichwertige Bedingung ist die Forderung, dass der Graph der Abbildung f ein Untervektorraum des kartesischen Produkts V×W ist. Dieses wird dabei als direktes Produkt und somit als ein Vektorraum über K betrachtet.

Erklärung

Eine Abbildung ist linear, wenn sie verträglich mit der Vektorraumstruktur ist. Sprich: Lineare Abbildungen vertragen sich sowohl mit der zugrundeliegenden Addition als auch mit der skalaren Multiplikation des Definitions- und Wertebereichs. Die Verträglichkeit mit der Addition bedeutet, dass die lineare Abbildung f:VW Summen erhält. Wenn wir im Definitionsbereich eine Summe v3=v1+v2 mit v1,v2,v3V haben, so gilt f(v3)=f(v1)+f(v2) und damit bleibt diese Summe nach der Abbildung im Wertebereich erhalten:

v1,v2,v3V(v3=v1+v2f(v3)=f(v1)+f(v2))

Diese Implikation kann verkürzt werden, indem die Prämisse v3=v1+v2 in f(v3)=f(v1)+f(v2) eingesetzt wird. So erhält man die Forderung f(v1+v2)=f(v1)+f(v2). Analog kann die Verträglichkeit mit der skalaren Multiplikation beschrieben werden. Diese ist erfüllt, wenn aus dem Zusammenhang v~=λv mit dem Skalar λK und vV im Definitionsbereich folgt, dass auch f(v~)=λf(v) im Wertebereich gilt:

v~,vVλK(v~=λvf(v~)=λf(v))

Nach Einsetzen der Prämisse v~=λv in die Konklusion f(v~)=λf(v) erhält man die Forderung f(λv)=λf(v).

Beispiele

  • Für V=W= hat jede lineare Abbildung die Gestalt f(x)=mx mit m.
  • Es sei V=n und W=m. Dann wird für jede m×n-Matrix A mit Hilfe der Matrizenmultiplikation eine lineare Abbildung f:nm durch
f(x)=Ax=(a11a1nam1amn)(x1xn)
definiert. Jede lineare Abbildung von n nach m kann so dargestellt werden.
  • Ist I ein offenes Intervall, V=C1(I,) der -Vektorraum der stetig differenzierbaren Funktionen auf I und W=C0(I,) der -Vektorraum der stetigen Funktionen auf I, so ist die Abbildung
    D:C1(I,)C0(I,), ff,
    die jeder Funktion fC1(I,) ihre Ableitung zuordnet, linear. Entsprechendes gilt für andere lineare Differentialoperatoren.

Bild und Kern

Zwei bei der Betrachtung linearer Abbildungen wichtige Mengen sind das Bild und der Kern einer linearen Abbildung f:VW.

  • Das Bild im(f) der Abbildung ist die Menge der Bildvektoren unter f, also die Menge aller f(v) mit v aus V. Die Bildmenge wird daher auch durch f(V) notiert. Das Bild ist ein Untervektorraum von W.
  • Der Kern ker(f) der Abbildung ist die Menge der Vektoren aus V, die durch f auf den Nullvektor von W abgebildet werden. Er ist ein Untervektorraum von V. Die Abbildung f ist genau dann injektiv, wenn der Kern nur den Nullvektor enthält.

Eigenschaften

  • Eine lineare Abbildung zwischen den Vektorräumen V und W bildet den Nullvektor von V auf den Nullvektor von W ab:
    f(0V)=0W, denn f(0V)=f(00V)=0f(0V)=0W.
  • Eine Beziehung zwischen Kern und Bild einer linearen Abbildung f:VW beschreibt der Homomorphiesatz: Der Faktorraum V/ker(f) ist isomorph zum Bild im(f).

Lineare Abbildungen zwischen endlichdimensionalen Vektorräumen

Basis

Zusammenfassung der Eigenschaften injektiver und surjektiver linearer Abbildungen

Eine lineare Abbildung zwischen endlichdimensionalen Vektorräumen ist durch die Bilder der Vektoren einer Basis eindeutig bestimmt. Bilden die Vektoren b1,,bn eine Basis des Vektorraums V und sind w1,,wn Vektoren in W, so gibt es genau eine lineare Abbildung f:VW, die b1 auf w1, b2 auf w2, …, bn auf wn abbildet. Ist v ein beliebiger Vektor aus V, so lässt er sich eindeutig als Linearkombination der Basisvektoren darstellen:

v=j=1nvjbj

Hierbei sind v1,,vn die Koordinaten des Vektors v bezüglich der Basis {b1,,bn}. Sein Bild f(v) ist gegeben durch

f(v)=j=1nvjf(bj)=j=1nvjwj.

Die Abbildung f ist genau dann injektiv, wenn die Bildvektoren w1,,wn der Basis linear unabhängig sind. Sie ist genau dann surjektiv, wenn w1,,wn den Zielraum W aufspannen.

Ordnet man jedem Element b1,,bn einer Basis von V einen Vektor w1,,wn aus W beliebig zu, so kann man mit obiger Formel diese Zuordnung eindeutig zu einer linearen Abbildung f:VW fortsetzen.

Stellt man die Bildvektoren wj bezüglich einer Basis von W dar, so führt dies zur Matrixdarstellung der linearen Abbildung.

Abbildungsmatrix

Vorlage:Hauptartikel

Sind V und W endlichdimensional, dimV=n, dimW=m, und sind Basen B={b1,,bn} von V und B={b1,,bm} von W gegeben, so kann jede lineare Abbildung f:VW durch eine m×n-Matrix MBB(f) dargestellt werden. Diese erhält man wie folgt: Für jeden Basisvektor bj aus B lässt sich der Bildvektor f(bj) als Linearkombination der Basisvektoren b1,,bm darstellen:

f(bj)=i=1maijbi

Die aij, i=1,,m, j=1,,n bilden die Einträge der Matrix MBB(f):

MBB(f)=(a11a1ja1nam1amjamn)

In der j-ten Spalte stehen also die Koordinaten von f(bj) bezüglich der Basis B.

Mit Hilfe dieser Matrix kann man den Bildvektor f(v) jedes Vektors v=v1b1++vnbnV berechnen:

f(v)=j=1nvjf(bj)=j=1nvj(i=1maijbi)=i=1m(j=1naijvj)bi

Für die Koordinaten w1,,wm von f(v) bezüglich B gilt also

wi=j=1naijvj.

Dies kann man mit Hilfe der Matrizenmultiplikation ausdrücken:

(w1wm)=(a11a1nam1amn)(v1vn)

Die Matrix MBB(f) heißt Abbildungsmatrix oder Darstellungsmatrix von f. Andere Schreibweisen für MBB(f) sind BfB und B[f]B.

Dimensionsformel

Vorlage:Hauptartikel Bild und Kern stehen über den Dimensionssatz in Beziehung. Dieser sagt aus, dass die Dimension von V gleich der Summe der Dimensionen des Bildes und des Kerns ist:

dimV=dimker(f)+dimim(f)

Lineare Abbildungen zwischen unendlichdimensionalen Vektorräumen

Vorlage:Hauptartikel

Insbesondere in der Funktionalanalysis betrachtet man lineare Abbildungen zwischen unendlichdimensionalen Vektorräumen. In diesem Kontext nennt man die linearen Abbildungen meist lineare Operatoren. Die betrachteten Vektorräume tragen meist noch die zusätzliche Struktur eines normierten vollständigen Vektorraums. Solche Vektorräume heißen Banachräume. Im Gegensatz zum endlichdimensionalen Fall reicht es nicht, lineare Operatoren nur auf einer Basis zu untersuchen. Nach dem baireschen Kategoriensatz hat nämlich eine Basis eines unendlichdimensionalen Banachraums überabzählbar viele Elemente und die Existenz einer solchen Basis lässt sich nicht konstruktiv begründen, das heißt nur unter Verwendung des Auswahlaxioms. Man verwendet daher einen anderen Basisbegriff, etwa Orthonormalbasen oder allgemeiner Schauderbasen. Damit können gewisse Operatoren wie zum Beispiel Hilbert-Schmidt-Operatoren mithilfe „unendlich großer Matrizen“ dargestellt werden, wobei dann auch unendliche Linearkombinationen zugelassen werden müssen.

Besondere lineare Abbildungen

Monomorphismus
Ein Monomorphismus zwischen Vektorräumen ist eine lineare Abbildung f:VW, die injektiv ist. Dies trifft genau dann zu, wenn die Spaltenvektoren der Darstellungsmatrix linear unabhängig sind.
Epimorphismus
Ein Epimorphismus zwischen Vektorräumen ist eine lineare Abbildung f:VW, die surjektiv ist. Das ist genau dann der Fall, wenn der Rang der Darstellungsmatrix gleich der Dimension von W ist.
Isomorphismus
Ein Isomorphismus zwischen Vektorräumen ist eine lineare Abbildung f:VW, die bijektiv ist. Das ist genau der Fall, wenn die Darstellungsmatrix regulär ist. Die beiden Räume V und W bezeichnet man dann als isomorph.
Endomorphismus
Ein Endomorphismus zwischen Vektorräumen ist eine lineare Abbildung, bei der die Räume V und W gleich sind: f:VV. Die Darstellungsmatrix dieser Abbildung ist eine quadratische Matrix.
Automorphismus
Ein Automorphismus zwischen Vektorräumen ist eine bijektive lineare Abbildung, bei der die Räume V und W gleich sind. Er ist also sowohl ein Isomorphismus als auch ein Endomorphismus. Die Darstellungsmatrix dieser Abbildung ist eine reguläre Matrix.

Vektorraum der linearen Abbildungen

Bildung des Vektorraums L(V,W)

Die Menge L(V,W)der linearen Abbildungen von einem K-Vektorraum V in einen K-Vektorraum W -manchmal auch als HomK(V,W) geschrieben- ist ein Vektorraum über K, genauer: ein Untervektorraum des K-Vektorraums aller Abbildungen von V nach W. Das bedeutet, dass die Summe zweier linearer Abbildungen f und g, komponentenweise definiert durch

(f+g):xf(x)+g(x),

wieder eine lineare Abbildung ist und dass das Produkt

(λf):xλf(x)

einer linearen Abbildung mit einem Skalar λK auch wieder eine lineare Abbildung ist.

Hat V die Dimension n und W die Dimension m, und sind in V eine Basis B und in W eine Basis C gegeben, so ist die Abbildung

L(V,W)Km×n, fMCB(f)

in den Matrizenraum Km×n ein Isomorphismus. Der Vektorraum L(V,W) hat also die Dimension mn.

Betrachtet man die Menge der linearen Selbstabbildungen eines Vektorraums, also den Spezialfall V=W, so bilden diese nicht nur einen Vektorraum, sondern mit der Verkettung von Abbildungen als Multiplikation eine assoziative Algebra, die kurz mit L(V) bezeichnet wird.

Verallgemeinerung

Eine lineare Abbildung ist ein Spezialfall einer affinen Abbildung.

Ersetzt man in der Definition der linearen Abbildung zwischen Vektorräumen den Körper durch einen Ring, erhält man einen Modulhomomorphismus.

Literatur

  • Albrecht Beutelspacher: Lineare Algebra. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. 6., durchgesehene und ergänzte Auflage. Vieweg Braunschweig u. a. 2003, ISBN 3-528-56508-X, S. 124–143.
  • Günter Gramlich: Lineare Algebra. Eine Einführung für Ingenieure. Fachbuchverlag Leipzig im Carl-Hanser-Verlag, München 2003, ISBN 3-446-22122-0.
  • Detlef Wille: Repetitorium der Linearen Algebra. Band 1. 4. Auflage, Nachdruck. Binomi, Springe 2003, ISBN 3-923923-40-6.

Vorlage:Wikibooks Vorlage:Wikiversity

Vorlage:Normdaten