Skalarmultiplikation

Aus testwiki
Zur Navigation springen Zur Suche springen

Vorlage:Dieser Artikel

Skalarmultiplikation in der euklidischen Ebene: der Vektor w wird mit der Zahl 2 multipliziert und der Vektor v mit der Zahl -1

Die Skalarmultiplikation, auch S-Multiplikation oder skalare Multiplikation genannt, ist eine äußere zweistellige Verknüpfung zwischen einem Skalar und einem Vektor, die in der Definition von Vektorräumen gefordert wird. Die Skalare sind dabei Elemente des Körpers, über dem der Vektorraum definiert ist. Auch die analoge Verknüpfung bei Moduln wird Skalarmultiplikation genannt.

Das Ergebnis einer Skalarmultiplikation ist ein entsprechend skalierter Vektor. Im anschaulichen Fall euklidischer Vektorräume verlängert oder verkürzt die Skalarmultiplikation die Länge des Vektors um den angegebenen Faktor. Bei negativen Skalaren wird dabei zusätzlich die Richtung des Vektors umgekehrt. Eine spezielle Form einer solchen Skalierung ist die Normierung. Hierbei wird ein Vektor mit dem Kehrwert seiner Länge (allgemein seiner Norm) multipliziert, wodurch man einen Einheitsvektor mit Länge (oder Norm) eins erhält.

Definition

Ist V ein Vektorraum über dem Körper K, dann ist die Skalarmultiplikation eine zweistellige Verknüpfung

:K×VV,

die per Definition des Vektorraumes gemischt assoziativ und distributiv ist, also für alle Vektoren u,vV und alle Skalare α,βK folgende Eigenschaften erfüllt:

  • α(βv)=(αβ)v
  • α(uv)=αuαv
  • (α+β)v=αvβv

Zudem gilt die Neutralität des Einselements 1 des Körpers:

  • 1v=v.

Hierbei bezeichnet die Vektoraddition in V sowie + und jeweils die Addition und die Multiplikation im Körper K. Häufig wird sowohl für die Vektoraddition, als auch für die Körperaddition das Pluszeichen + und sowohl für die Skalarmultiplikation, als auch für die Körpermultiplikation das Malzeichen verwendet. Dieser Konvention wird auch aufgrund der einfacheren Lesbarkeit im weiteren Verlauf dieses Artikels gefolgt. Das Multiplikationssymbol wird oft auch weggelassen und man schreibt kurz αβ statt αβ und αv statt αv.

Eigenschaften

Neutralität

Bezeichnet 0KK das Nullelement des Körpers und 0VV den Nullvektor des Vektorraums, dann gilt für alle Vektoren vV

0Kv=0V,

denn es gilt mit dem zweiten Distributivgesetz

0Kv+0Kv=(0K+0K)v=0Kv

und deswegen muss 0Kv der Nullvektor sein. Entsprechend gilt für alle Skalare αK

α0V=0V,

denn es gilt mit dem ersten Distributivgesetz

α0V+α0V=α(0V+0V)=α0V

und daher muss auch hier α0V der Nullvektor sein. Insgesamt erhält man so

αv=0Vα=0Koderv=0V,

denn aus αv=0V folgt entweder α=0K oder α0K und dann v=α10V=0V, wobei α1 das multiplikativ inverse Element zu α ist.

Inverse

Bezeichnet nun 1 das additiv inverse Element zum Einselement 1 und v den inversen Vektor zu v, dann gilt

(1)v=v,

denn mit der Neutralität der Eins erhält man

0K=0Kv=(11)v=1v+(1)v=v+(1)v

und damit ist (1)v der inverse Vektor zu v. Ist nun allgemein α das additiv inverse Element zu α, dann gilt

(α)v=(αv)=α(v),

denn mit β=1 erhält man durch das gemischte Assoziativgesetz

(α)v=(βα)v=β(αv)=(αv)

sowie mit der Kommutativität der Multiplikation zweier Skalare

(α)v=(αβ)v=α(βv)=α(v).

Beispiele

Koordinatenvektoren

Ist V=Kn der Koordinatenraum und v=(v1,,vn)TKn ein Koordinatenvektor, so wird die Multiplikation mit einem Skalar αK komponentenweise wie folgt definiert:

αv=α(v1vn)=(αv1αvn).

Bei der Skalarmultiplikation wird demnach jede Komponente des Vektors mit dem Skalar multipliziert. Im dreidimensionalen euklidischen Raum 3 erhält man beispielsweise

3(142)=(313432)=(3126).

Matrizen

Ist V=Km×n der Matrizenraum und A=(aij)Km×n eine Matrix, so wird die Multiplikation mit einem Skalar αK ebenfalls komponentenweise definiert:

αA=α(a11a1nam1amn)=(αa11αa1nαam1αamn).

Bei der Skalarmultiplikation wird also wiederum jeder Eintrag der Matrix mit dem Skalar multipliziert. Beispielsweise erhält man für eine reelle (2×2)-Matrix

3(1243)=(31323433)=(36129).

Polynome

Ist V=K[X] der Vektorraum der Polynome in der Variablen X mit Koeffizienten aus einem Körper K, so wird die Multiplikation eines Polynoms PK[X] mit einem Skalar αK wiederum komponentenweise definiert:

αP=α(a0+a1X++anXn)=(αa0)+(αa1)X++(αan)Xn.

Beispielsweise ergibt die Skalarmultiplikation der reellen Polynomfunktion p(x)=xnx mit der Zahl 3 das Polynom

(3p)(x)=3(xnx)=3xn3x.

Funktionen

Ist V=F(Ω,W) ein linearer Funktionenraum und fF(Ω,W) eine Funktion von einer nichtleeren Menge Ω in einen Vektorraum W, dann wird das Ergebnis der Skalarmultiplikation einer solchen Funktion mit einem Skalar αK definiert als die Funktion

αf:ΩW,x(αf)(x)=αf(x).

Betrachtet man beispielsweise den Vektorraum der linearen reellen Funktionen der Form f(x)=ax+b, dann erhält man durch Skalarmultiplikation mit einer reellen Zahl c die Funktion

(cf)(x)=cf(x)=c(ax+b)=cax+cb.

Durch die Skalarmultiplikation wird demnach jeder Funktionswert um den Faktor c skaliert.

Literatur