Kegel (Topologie)

Aus testwiki
Zur Navigation springen Zur Suche springen

In dem mathematischen Teilgebiet der Topologie ist ein Kegel über einem Raum eine bestimmte aus diesem konstruierte Punktmenge, die in natürlicher Weise selbst wieder einen topologischen Raum bildet. Im euklidischen Fall ist dieser tatsächlich homöomorph zu einem geometrischen Kegel, im Allgemeinen ist die topologische Definition jedoch umfassender. Hauptsächlich werden Kegel über topologischen Räumen in der algebraischen Topologie betrachtet.

Definition

Kegel über einem Kreis. Der ursprüngliche Raum ist blau, der zusammengeschlagene Endpunkt grün gefärbt.

Sei X ein topologischer Raum. Der Kegel über X ist definiert als die Menge

CX:=(X×[0;1])/(X×{1})

versehen mit der Quotiententopologie bezüglich der kanonischen Projektion.[1]

Die Bezeichnung C stammt dabei vom lateinischen Wort conus für Kegel.

Ausführlich bedeutet das:

Es seien X ein topologischer Raum und [0;1] das reelle Einheitsintervall mit der Teilraumtopologie. Sei weiter auf dem Produkt X×[0;1] dieser beiden Räume durch

xy:x=yx,y(X×{1})

eine Äquivalenzrelation erklärt. Setze nun

CX=(X×[0;1])/(X×{1}):=(X×[0;1])/

als den Faktorraum und betrachte die kanonische Projektion

p:X×[0;1]CX;x[x].

Eine Teilmenge UCX soll nun genau dann offen heißen, wenn ihr Urbild p1(U) offen in X×[0;1] ist. Das System dieser offenen Mengen bildet tatsächlich eine Topologie auf CX, der so entstehende Raum ist der Kegel über X.

Anschaulich gesprochen wird die Deckfläche des Zylinders X×[0;1] zu einem einzigen Punkt zusammengeschlagen.[2]

Eigenschaften

  • Jeder topologische Raum lässt sich als Teilraum seines Kegels auffassen, indem man X mit X×{1} identifiziert.
  • Der Kegel eines nicht-leeren Raumes ist stets zusammenziehbar, vermöge der Homotopie ht([x;s])=[(x;(1t)s)].
    • Zusammen mit der ersten Eigenschaft ergibt sich eine kanonische Einbettung eines beliebigen (nicht-leeren) in einen zusammenziehbaren Raum, was die Bedeutung des Kegels in der algebraischen Topologie begründet.
  • Lässt sich X in einen Euklidischen Raum einbetten, so ist CX zu einem geometrischen Kegel homöomorph.

Beispiele

  • Der Kegel über einem n-Simplex ist ein n+1-Simplex.
  • Der Kegel über einem Polygon P entspricht der Pyramide mit Grundfläche P
  • Der topologische Kegel über einem ausgefüllten Kreis ist der klassische Kreiskegel (siehe Abbildung).
  • Der topologische Kegel über einer Kreislinie ist die Mantelfläche eines Kreiskegels; diese wiederum ist topologisch äquivalent zum Vollkreis, indem man anschaulich gesprochen die Spitze eindrückt.
    • Allgemein gilt die Homöomorphie CSn1Dn.

Reduzierter Kegel

Sei nun (X;x0) ein punktierter Raum, so ist der reduzierte Kegel über X definiert als

C*X=X×[0,1]/(X×{0})({x0}×[0,1])

mit der Quotiententopologie.[3]

Mit [(x0;0)] als Basispunkt wird C*X selbst wieder zu einem punktierten Raum und die oben erwähnte Inklusion x[(x;1)] zu einer basispunkterhaltenden Einbettung.

Der reduzierte Kegel ist gleich dem reduzierten Abbildungskegel der Identität.

Kegelfunktor

In der Kategorientheorie induziert die Zuordnung XCX einen Endofunktor C:𝐓𝐨𝐩𝐓𝐨𝐩 auf der Kategorie 𝐓𝐨𝐩 der topologischen Räume.

Dieser ordnet außerdem jeder stetigen Abbildung fMor(X;Y) diejenige Abbildung C(f)Mor(CX;CY) zu, die durch [(x;t)]CX[(f(x);t)]CY erklärt wird.[4]

Das Gleiche gilt für XC*X in der Kategorie 𝐓𝐨𝐩* der punktierten topologischen Räume.

Hinweis: Die hier verwendete Notation sollte nicht mit dem Abbildungskegel Cf für stetiges f oder dem Funktionenraum 𝒞(X) aller stetigen Abbildungen auf einem topologischen Raum X verwechselt werden.

Siehe auch

Einzelnachweise

  1. Allen Hatcher: Algebraic topology. 9, Cambridge University Press, Cambridge 2002, zitiert nach: math.cornell.edu Aufgerufen am 2. Juli 2012.
  2. Klaus Jänich: Topologie. 8. Aufl., 51f., Springer, Berlin 2008.
  3. Lothar Tschampel: Topologie 2: Bezüge zur Algebra. Buch-MAT 3.B, 1. Aufl., Buch-X-Verlag, Berlin 2011.
  4. Roman Goebel: Continuity of the cone functor. in: Topology and its applications. 132, S. 235–250, 2003, zitiert nach: wiki.helsinki.fi Aufgerufen am 4. Juli 2012.

Vorlage:Navigationsleiste Algebraische Topologie