Homotopie

Aus testwiki
Zur Navigation springen Zur Suche springen

Vorlage:Dieser Artikel

Eine Homotopie, die eine Kaffeetasse in einen Donut (einen Volltorus) überführt.

In der Topologie ist eine Homotopie (von Vorlage:ElS ‚gleich‘ und τόπος tópos ‚Ort‘, ‚Platz‘) eine stetige Deformation zwischen zwei Abbildungen von einem topologischen Raum in einen anderen, beispielsweise die Deformation einer Kurve in eine andere Kurve. Eine Anwendung von Homotopie ist die Definition der Homotopiegruppen, welche wichtige Invarianten in der algebraischen Topologie sind.

Der Begriff „Homotopie“ bezeichnet sowohl die Eigenschaft zweier Abbildungen, zueinander homotop (präferiert) zu sein, als auch die Abbildung („stetige Deformation“), die diese Eigenschaft vermittelt.

Definition

Eine Homotopie zwischen zwei stetigen Abbildungen f,g:XY ist eine stetige Abbildung

H:X×[0,1]Y

mit der Eigenschaft für alle xX gilt

H(x,0)=f(x) und H(x,1)=g(x)

wobei [0,1] das Einheitsintervall ist.

Der erste Parameter entspricht also dem der ursprünglichen Abbildungen und der zweite gibt den Grad der Deformation an. Eine Homotopie definiert eine ein-parametrige Familie (Ht(x))0t1 mit Ht(x):=H(x,t), so dass H0(x)=f(x) und H1(x)=g(x). Besonders anschaulich wird die Definition, wenn man sich den zweiten Parameter als „Zeit“ vorstellt (vgl. Bild).

Äquivalent kann man eine Homotopie definieren als einen (stetigen) Weg von f nach g im Raum der stetigen Funktionen C(X,Y) mit der kompakt-offenen Topologie.

Man sagt, f sei homotop zu g und schreibt fg. Homotopie ist eine Äquivalenzrelation auf der Menge der stetigen Abbildungen XY, die zugehörigen Äquivalenzklassen heißen Homotopieklassen, die Menge dieser Äquivalenzklassen wird häufig mit [X,Y] bezeichnet.

Eine stetige Abbildung f:XY heißt nullhomotop, wenn sie homotop zu einer konstanten Abbildung ist.

Eigenschaften

  • Homotopierelationen bleiben unter Kompositionen erhalten, das heißt wenn f1,f2:YZ und g1,g2:XY stetige Funktionen sind und
f1f2; g1g2
gilt, dann gilt auch
f1g1f2g2.[1]

Beispiel

Homotopie eines Kreises in R² auf einen Punkt

Sei X=S12 der Einheitskreis in der Ebene und Y=2 die ganze Ebene. Die Abbildung f sei die Einbettung von X in Y, und g sei die Abbildung, die ganz X auf den Ursprung abbildet, also

f:XY, f(x)=x und g:XY, g(x)=0.

Dann sind f und g zueinander homotop. Denn

H:X×[0,1]2 mit H(x,t)=(1t)f(x)

ist stetig und erfüllt H(x,0)=1f(x)=f(x) und H(x,1)=0f(x)=0=g(x).

Relative Homotopie

Ist E eine Teilmenge von X, und stimmen zwei stetige Abbildungen f,g:XY auf E überein, so heißen f und g homotop relativ zu E, wenn es eine Homotopie H:fg gibt, für die H(e,t) für jedes eE unabhängig von t ist.

Homotopie zweier Kurven
Die beiden hier gezeigten gestrichelten Wege sind relativ zu ihren Endpunkten homotop. Die Animation repräsentiert eine mögliche Homotopie.

Ein wichtiger Spezialfall ist die Homotopie von Wegen relativ der Endpunkte: Ein Weg ist eine stetige Abbildung γ:[0,1]X; dabei ist [0,1] das Einheitsintervall. Zwei Wege heißen homotop relativ der Endpunkte, wenn sie homotop relativ {0,1} sind, d. h. wenn die Homotopie die Anfangs- und Endpunkte festhält. (Sonst wären Wege in der gleichen Wegzusammenhangskomponente immer homotop.) Sind also γ0 und γ1 zwei Wege in Y mit γ0(0)=γ1(0)=x und γ0(1)=γ1(1)=y, so ist eine Homotopie relativ der Endpunkte zwischen ihnen eine stetige Abbildung

H:[0,1]×[0,1]Y

mit H(t,0)=γ0(t), H(t,1)=γ1(t), H(0,s)=x und H(1,s)=y.

Ein Weg heißt nullhomotop genau dann, wenn er homotop zum konstanten Weg γ(t)=x0 ist.

Der andere häufig auftretende Fall ist die Homotopie von Abbildungen zwischen punktierten Räumen. Sind (X,x0) und (Y,y0) punktierte Räume, so sind zwei stetige Abbildungen f,g:(X,x0)(Y,y0) homotop als Abbildungen von punktierten Räumen, wenn sie relativ x0 homotop sind.

Beispiel: Die Fundamentalgruppe

Die Menge der Homotopieklassen von Abbildungen punktierter Räume von (S1,*) nach (X,x0) ist die Fundamentalgruppe von X zum Basispunkt x0.

Ist zum Beispiel (X,x0) ein Kreis mit einem beliebigen ausgewählten Punkt x0, dann ist der Weg, der durch einmaliges Umrunden des Kreises beschrieben wird, nicht homotop zum Weg, den man durch Stillstehen am Ausgangspunkt x0 erhält.

Homotopieäquivalenz

Vorlage:Hauptartikel

Seien X und Y zwei topologische Räume und sind f:XY und g:YX stetige Abbildungen. Dann sind die Verknüpfungen gf und fg jeweils stetige Abbildungen von X bzw. Y auf sich selbst, und man kann versuchen, diese zur Identität auf X bzw. Y zu homotopieren.

Falls es solche f und g gibt, dass gf homotop zu idX und fg homotop zu idY ist, so nennt man X und Y homotopieäquivalent oder vom gleichen Homotopietyp. Die Abbildungen f und g heißen dann Homotopieäquivalenzen.

Homotopieäquivalente Räume haben die meisten topologischen Eigenschaften gemeinsam. Falls X und Y homotopieäquivalent sind, so gilt

Vorlage:Anker Isotopie

Definition

Wenn zwei gegebene homotope Abbildungen f:XY und g:XY zu einer bestimmten Regularitätsklasse gehören oder andere zusätzliche Eigenschaften besitzen, kann man sich fragen, ob die beiden innerhalb dieser Klasse durch einen Weg miteinander verbunden werden können. Dies führt zum Konzept der Isotopie. Eine Isotopie ist eine Homotopie

H:X×[0,1]Y

wie oben, wobei alle Zwischenabbildungen Ht:=H(,t) (für festes t) ebenfalls die geforderten Zusatzeigenschaften besitzen sollen. Die zugehörigen Äquivalenzklassen heißen Isotopieklassen.

Beispiele

Zwei Homöomorphismen sind also isotop, wenn eine Homotopie existiert, so dass alle Ht Homöomorphismen sind. Zwei Diffeomorphismen sind isotop, wenn alle Ht selbst Diffeomorphismen sind. (Man bezeichnet sie dann auch als diffeotop.) Zwei Einbettungen sind isotop, wenn alle Ht Einbettungen sind.

Unterschied zur Homotopie

Zu verlangen, dass zwei Abbildungen isotop sind, kann tatsächlich eine stärkere Anforderung sein, als zu verlangen, dass sie homotop sind. Zum Beispiel ist der Homöomorphismus der Einheitskreisscheibe in 2, der durch f(x,y)=(x,y) definiert ist, dasselbe wie eine 180-Grad-Drehung um den Nullpunkt, darum sind die Identitätsabbildung und f isotop, denn sie können durch Drehungen miteinander verbunden werden. Im Gegensatz dazu ist die Abbildung auf dem Intervall [1,1] in , definiert durch f(x)=x nicht isotop zur Identität. Das liegt daran, dass jede Homotopie der beiden Abbildungen zu einem bestimmten Zeitpunkt die beiden Endpunkte miteinander vertauschen muss; zu diesem Zeitpunkt werden sie auf denselben Punkt abgebildet und die entsprechende Abbildung ist kein Homöomorphismus. Hingegen ist f homotop zur Identität, zum Beispiel durch die Homotopie H:[1,1]×[0,1][1,1], gegeben durch H(x,t)=2txx.

Anwendungen

In der Geometrischen Topologie werden Isotopien benutzt, um Äquivalenzrelationen herzustellen.

Zum Beispiel in der Knotentheorie – wann sind zwei Knoten K1 und K2 als gleich zu betrachten? Die intuitive Idee, den einen Knoten in den anderen zu deformieren, führt dazu, dass man einen Weg von Homöomorphismen verlangt: Eine Isotopie, die mit der Identität des dreidimensionalen Raumes beginnt und bei einem Homöomorphismus h endet, so dass h den Knoten K1 in den Knoten K2 überführt. Eine solche Isotopie des umgebenden Raumes wird ambiente Isotopie[2] oder Umgebungsisotopie genannt.

Eine andere wichtige Anwendung ist die Definition der Abbildungsklassengruppe Mod(M) einer Mannigfaltigkeit M. Man betrachtet Diffeomorphismen von M „bis auf Isotopie“, das heißt, dass Mod(M) die (diskrete) Gruppe der Diffeomorphismen von M ist, modulo der Gruppe der Diffeomorphismen, die isotop zur Identität sind.

Homotopie kann in der numerischen Mathematik für eine robuste Initialisierung zur Lösung von differential-algebraischen Gleichungen eingesetzt werden (siehe Homotopieverfahren).

Kettenhomotopie

Zwei Kettenhomomorphismen

f,g:(A,dA,)(B,dB,)

zwischen Kettenkomplexen (A,dA,) und (B,dB,) heißen kettenhomotop, wenn es einen Homomorphismus

K:(A)(B+1)

mit

dB,+1K+K1dA,=fg

gibt.

Wenn f,g:XY homotope Abbildungen zwischen topologischen Räumen sind, dann sind die induzierten Abbildungen der singulären Kettenkomplexe

f,g:(C(X),d)(C(Y),d)

kettenhomotop.

Punktierte Homotopie

Vorlage:Hauptartikel Zwei punktierte Abbildungen

f,g:(X,x0)(Y,y0)

heißen homotop, wenn es eine stetige Abbildung H:X×[0,1]Y mit

H(x,0)=f(x) und H(x,1)=g(x) für alle xX
H(x0,t)=y0 für alle t[0,1]

gibt. Die Menge der Homotopieklassen punktierter Abbildungen wird mit [X,Y] bezeichnet.

Literatur

Einzelnachweise