Filter (Mathematik)

Aus testwiki
Zur Navigation springen Zur Suche springen

In der Mathematik ist ein Filter eine nichtleere nach unten gerichtete Oberhalb-Menge innerhalb einer umgebenden halbgeordneten Menge. Der Begriff des Filters geht auf den französischen Mathematiker Henri Cartan[1] zurück.

Anschaulich betrachtet enthält ein Filter Elemente, die zu groß sind, als dass sie den Filter passieren könnten. Ist x ein Filterelement, so ist auch jedes in der gegebenen Ordnungsrelation größere Element y ein Filterelement, und je zwei Filterelemente x und y haben einen gemeinsamen Kern z, der selbst schon zu groß ist, als dass er den Filter passieren könnte.

Filter in der umgekehrten Halbordnung heißen Ideale der Ordnung oder Ordnungsideale.

Anwendungen

Filter treten in der Theorie der Ordnungen und Verbände auf. Ein wichtiger Spezialfall sind Mengenfilter, d. h. Filter in der durch die Mengeninklusion halbgeordneten Potenzmenge einer Menge. Mengenfilter werden besonders in der Topologie verwendet und erlauben dort die Verallgemeinerung des Begriffs der Folge für topologische Räume ohne abzählbare Umgebungsbasis. So bildet das System der Umgebungen 𝒰(x) eines Punktes x in einem topologischen Raum einen speziellen Filter, den Umgebungsfilter. Umgebungsfilter können in Räumen, die kein Abzählbarkeitsaxiom erfüllen, zur Definition von Netzen verwendet werden, die die Rolle der Folgen aus der elementaren Analysis teilweise übernehmen. Man fasst dazu einen Filter als gerichtete Menge auf und betrachtet Netze auf dieser gerichteten Menge.

Mit einem Ultrafilter (der kein Hauptfilter ist) auf den natürlichen Zahlen lassen sich die hyperreellen Zahlen der Nichtstandardanalysis konstruieren. Allerdings wird die Existenz solcher Filter selbst nur durch das Auswahlaxiom – also nicht konstruktiv – gesichert.

Allgemeine Definitionen

Eine nichtleere Teilmenge F einer Quasiordnung 𝑷=(P,)[2] heißt Filter, wenn folgende Bedingungen erfüllt sind:

  1. F ist eine Oberhalb-Menge: xFyP:xyyF,
    (Das heißt, alle (mit x in Relation stehenden) Elemente, die größer als x sind, sind Teil des Filters.)
  2. F ist nach unten gerichtet: x,yFzF:zxzy.
    (Das heißt, F ist bzgl. der Umkehrrelation der betrachteten Halbordnung gerichtet.)

Der Filter F heißt eigentlicher (oder echter) Filter, wenn er nicht gleich P ist, sondern eine echte Teilmenge FP.[3]

Jeder Filter auf einer quasi- oder halbgeordneten Menge P ist Element der Potenzmenge von P. Die Menge der auf derselben (schwach)[4] halbgeordneten Menge definierten Filter wird durch die Inklusionsrelation ihrerseits halbgeordnet. Sind F1 und F2 Filter auf derselben (schwach) halbgeordneten Menge P, so heißt F2 feiner als F1 (F1 gröber als F2), wenn F1F2. Ein maximal feiner echter Filter heißt Ultrafilter.

Filter in Verbänden

Während diese Definition von Filter die allgemeinste für beliebige quasi- oder halbgeordnete Mengen ist, wurden Filter ursprünglich für Verbände definiert. In diesem Spezialfall ist ein Filter eine nichtleere Teilmenge F des Verbandes (P,), die eine Oberhalb-Menge und abgeschlossen unter endlichen Infima ist, d. h., für alle x,yF ist auch xyF.

Hauptfilter

Der kleinste Filter, der ein vorgegebenes Element p enthält, ist {xPpx}. Filter dieser Form heißen Hauptfilter und p heißt ein Hauptelement des Filters. Der zu p gehörende Hauptfilter wird als p geschrieben.

Primfilter

Ein echter Filter F in einem Verband P mit der Zusatzeigenschaft

abF(aFbF)

heißt Primfilter.

Ideale

Der zum Filter duale Begriff ist der des Ideals: Ein Ideal (auch Ordnungsideal) ist eine gerichtete Unterhalb-Menge in einer Quasi- oder Halbordnung.[3]

Betrachtet man in einer halbgeordneten Menge 𝑷=(P,) die Umkehrrelation 1=, so ist auch (P,) wieder eine halbgeordnete Menge. Die so durch Dualisierung entstehende Struktur wird als 𝑷opp=(P,) notiert.

Ein Filter in 𝑷opp ist ein Ideal in 𝑷 und umgekehrt.

Ebenso erhält man aus einem (distributiven) Verband (P,,) durch Vertauschen der beiden Verbandsverknüpfungen Supremum und Infimum wieder einen (distributiven) Verband. Sind in P ein kleinstes Element 0 und ein größtes Element 1 vorhanden, so werden sie ebenfalls vertauscht.

Beispiele

Teilbarkeit

In (,), dem beschränkten Verband der natürlichen Zahlen unter Teilbarkeit, ist für alle n die Teilermenge Tn von n ein Ideal. Tn{n} ist genau dann ein Ideal, wenn n=0.

Nullstrahlen

Wir betrachten in der sogenannten punktierten komplexen Ebene ×:={0} die Teilmengen sα={z×Arg(z)=α}, für 0α<2π, der (offenen) Strahlen aus der Null (kurz: Nullstrahlen). Auf × definieren wir nun eine Halbordnung , indem wir z1× als kleiner-gleich z2× betrachten, falls z1 und z2 auf demselben Strahl liegen und z1 betraglich kleiner oder gleich z2 ist. Das heißt

z1z2:Arg(z1)=Arg(z2)  und|z1||z2|

für z1,z2×.

In der halbgeordneten Menge (×,) sind nun alle Filter gegeben durch die Nullstrahlen und deren offene und abgeschlossene Teilstrahlen

s(z):={z×zz,zz}s¯(z):={z×zz}sα

für alle z× mit α=Arg(z). Jeder dieser Filter ist echt. Außerdem folgt aus z1z2, dass s¯(z1) feiner s(z1) feiner s¯(z2) feiner s(z2); insbesondere ist sα (0α<2π) ein maximal-feiner echter Filter und damit ein Ultrafilter. Für jede komplexe Zahl z× ist der abgeschlossene Strahl s¯(z) ihr Hauptfilter z mit z als (einzigem) Hauptelement.

Die Ordnungsideale in (×,) entsprechen den fehlenden Strahlenabschnitten zwischen der Null und dem Beginn jedes Teilstrahls. Ist der Teilstrahl offen, enthält er also nicht seinen Aufpunkt, so fehlt auch im entsprechenden Ordnungsideal der Aufpunkt – analog ist er im abgeschlossenen Fall in Teilstrahl und Ideal jeweils enthalten. (Filter und Ordnungsideal sind also nicht disjunkt!) Aus dem Nullstrahl ergibt sich kein entsprechendes Ordnungsideal, da der „fehlende“ Strahlenabschnitt durch die leere Menge gegeben wäre (die kein Filter sein kann). Die Ideale haben also die Form:

s1(z)=(sαs(z)){z}={z×zz,zz} und
s¯1(z)=(sαs¯(z)){z}={z×zz}

für alle z× und α=Arg(z).

Mengenfilter

Definition

Ein wichtiger Spezialfall eines Filters – vor allem in der Topologie – sind Mengenfilter. Man geht in diesem Fall von der durch die Mengeninklusion halbgeordneten Potenzmenge (𝒫(X),) einer beliebigen nichtleeren Menge X aus. Eine echte Teilmenge 𝒫(X) ist genau dann ein Mengenfilter oder Filter, wenn folgende Eigenschaften erfüllt sind:

  1. und X,
  2. F,G  FG,
  3. F,GF  G.

Ein Mengenfilter, für den gilt

FXFXF,

der also zu jeder Teilmenge diese selber oder ihr Komplement enthält, heißt Ultrafilter auf X.[3] Vorlage:Hauptartikel Diese Definitionen stimmen mit den oben gegebenen für echte Filter in Verbänden überein, da die Potenzmenge von X einen Verband bildet.

Beispiele für Mengenfilter

  • C:={MXCM} heißt der von CX erzeugte Hauptfilter.
  • Ist (X,τ) ein topologischer Raum mit Topologie τ, dann heißt 𝒰(x):={UXOτ:xOOU} Umgebungsfilter von x.
  • Ist S eine unendliche Menge, dann heißt {MSSM endlich} Fréchet-Filter der Menge S.
  • Ist ein nichtleeres Mengensystem von 𝒫(X) mit folgenden Eigenschaften
    1. und
    2. B1,B2 B3:B3B1B2,
so heißt Filterbasis in X. Ein solches Mengensystem erzeugt auf natürliche Weise einen Filter mittels
:=:={MXB:BM}.
Dieser heißt der von erzeugte Filter.
  • Ist f:XY eine Abbildung zwischen zwei nichtleeren Mengen und ein Filter auf X, so bezeichnet f() den von der Filterbasis {BYF:f(F)=B} erzeugten Filter. Dieser heißt Bildfilter von unter f.[5]

Anwendungen in der Topologie

Vorlage:Hauptartikel In der Topologie ersetzen Filter oder Netze die dort für eine befriedigende Konvergenztheorie unzureichenden Folgen. Insbesondere die Filter als sich verengende Mengensysteme haben sich hier als gut geeignet zur Konvergenzmessung erwiesen.[6] Man erhält auf diesem Wege oft analoge Sätze zu Sätzen über Folgen in metrischen Räumen.

Ist (X,τ) ein topologischer Raum, dann heißt ein Filter genau dann konvergent gegen xX, wenn 𝒰(x), d. h., wenn feiner ist als der Umgebungsfilter 𝒰(x) von x, d. h., alle (es genügen offene) Umgebungen von x enthält. Schreibweise: x.

So ist zum Beispiel eine Abbildung f:XY zwischen zwei topologischen Räumen genau dann stetig in xX, wenn f()f(x) für jeden Filter auf X mit x gilt.

In einem nicht-hausdorffschen Raum kann ein Filter gegen mehrere Punkte konvergieren. Hausdorff-Räume lassen sich sogar gerade dadurch charakterisieren, dass in ihnen kein Filter existiert, welcher gegen zwei verschiedene Punkte konvergiert.[7]

Siehe auch

Literatur

Zu den allgemeinen, ordnungs- und verbandstheoretischen Begriffsbildungen und ihren Anwendungen: Zu den Anwendungen in der mengentheoretischen Topologie:

  • Boto von Querenburg: Mengentheoretische Topologie. 3., neu bearbeitete und erweiterte Auflage. Springer, Berlin u. a. 2001, ISBN 3-540-67790-9.
  • Thorsten Camps, Stefan Kühling, Gerhard Rosenberger: Einführung in die mengentheoretische und die algebraische Topologie (= Berliner Studienreihe zur Mathematik. Bd. 15). Heldermann, Lemgo 2006, ISBN 3-88538-115-X.
  • Vorlage:Literatur
  • Vorlage:Literatur

Originalarbeiten

  • Henri Cartan: Théorie des filtres. In: Comptes rendus hebdomadaires des séances de l’Académie des Sciences. Band 205, 1937, Vorlage:ISSN, S. 595–598, Digitalisat.
  • Henri Cartan: Filtres et ultrafiltres. In: Comptes rendus hebdomadaires des séances de l'Académie des Sciences. Band 205, 1937, S. 777–779, Digitalisat.

Einzelnachweise und Anmerkungen

  1. Vorlage:Literatur
  2. d. h. einer Menge P mit einer reflexiven und transitiven Relation , auch Präordnung, schwache Halbordnung oder schwache partielle Ordnung genannt. Insbesondere fällt jede halbgordnete Menge unter diese Voraussetzung.
  3. 3,0 3,1 3,2 Stefan Bold: AD und Superkompaktheit, Mathematisches Institut der Rheinischen Friedrich-Wilhelm-Universität Bonn, April 2002, Seite 2–3
  4. schwach halbgeordnet syn. quasigeordnet
  5. Analog für Ideale.
  6. Führer: Allgemeine Topologie mit Anwendungen. 1977, S. 9.
  7. Schubert: Topologie. 1975, S. 44.