Narzisstische Zahl

Aus testwiki
Zur Navigation springen Zur Suche springen

Die narzisstischen Zahlen (auch Armstrong-Zahlen genannt) sind eine Teilmenge natürlicher Zahlen, die durch bestimmte Rechenvorschriften ihrer Ziffern sich selbst erzeugen. Sie spielen in der reinen Mathematik allerdings keine besondere Rolle, da sie stark vom verwendeten Zahlensystem (in der Regel vom Dezimalsystem) abhängen und somit keinen echten wissenschaftlichen Nutzen bringen.

Armstrong-Zahlen

Eine Armstrong-Zahl (nach Michael F. Armstrong)[1][2] oder PPDI (pluperfect digital invariant)[3] ist eine Zahl, deren Summe ihrer Ziffern, jeweils potenziert mit der Stellenanzahl der Zahl, wieder die Zahl selbst ergibt.

Mit anderen Worten:

Eine n-stellige Zahl der Form

a=an10n1+an110n2+an210n3++a2101+a1100 mit 0ai9 und 1in

ist eine Armstrong-Zahl, wenn gilt:

ann+an1n+an2n++a1n=a.

Beispiele

Beispiel 1:

Ein Beispiel für eine solche Zahl mit der Potenz n=5 ist die fünfstellige Zahl 54748:[4]

54748=55+45+75+45+85=3125+1024+16807+1024+32768

Beispiel 2:

Die Liste von kleinsten narzisstischen Zahlen mit n Stellen im Dezimalsystem ist die folgende (wenn keine Zahl mit dieser Stellenzahl existiert, steht 0 an dieser Stelle):

1, 0, 153, 1634, 54748, 548834, 1741725, 24678050, 146511208, 4679307774, 32164049650, 0, 0, 28116440335967, 0, 4338281769391370, 21897142587612075, 0, 1517841543307505039, 63105425988599693916, 128468643043731391252, 0, … (Vorlage:OEIS)

Es gibt insgesamt genau 88 narzisstische Zahlen (ohne die 0) im Dezimalsystem. Die Anzahl ihrer Stellen gibt die folgende Zahlenliste an:

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39 (Vorlage:OEIS)

Ordnet man diese Zahlen nach ihrer Stellenanzahl n, so erhält man folgende Tabelle (Vorlage:OEIS):

n narzisstische Zahlen zur Basis 10
1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
3 153, 370, 371, 407
4 1634, 8208, 9474
5 54748, 92727, 93084
6 548834
7 1741725, 4210818, 9800817, 9926315
8 24678050, 24678051, 88593477
9 146511208, 472335975, 534494836, 912985153
10 4679307774
11 32164049650, 32164049651, 40028394225, 42678290603, 44708635679, 49388550606, 82693916578, 94204591914
14 28116440335967
16 4338281769391370, 4338281769391371
n narzisstische Zahlen zur Basis 10
17 21897142587612075, 35641594208964132, 35875699062250035
19 1517841543307505039, 3289582984443187032, 4498128791164624869, 4929273885928088826
20 63105425988599693916
21 128468643043731391252, 449177399146038697307
23 21887696841122916288858, 27879694893054074471405, 27907865009977052567814, 28361281321319229463398, 35452590104031691935943
24 174088005938065293023722, 188451485447897896036875, 239313664430041569350093
25 1550475334214501539088894, 1553242162893771850669378, 3706907995955475988644380, 3706907995955475988644381, 4422095118095899619457938
n narzisstische Zahlen zur Basis 10
27 121204998563613372405438066, 121270696006801314328439376, 128851796696487777842012787, 174650464499531377631639254, 177265453171792792366489765
29 14607640612971980372614873089, 19008174136254279995012734740, 19008174136254279995012734741, 23866716435523975980390369295
31 1145037275765491025924292050346, 1927890457142960697580636236639, 2309092682616190307509695338915
32 17333509997782249308725103962772
33 186709961001538790100634132976990, 186709961001538790100634132976991
34 1122763285329372541592822900204593
35 12639369517103790328947807201478392, 12679937780272278566303885594196922
37 1219167219625434121569735803609966019
38 12815792078366059955099770545296129367
39 115132219018763992565095597973971522400, 115132219018763992565095597973971522401

Verallgemeinerung

Wählt man eine andere Basis b10, so ist eine narzisstische Zahl analog zum Dezimalsystem definiert:

Eine n-stellige Zahl mit Basis b der Form

a=anbn1+an1bn2+an2bn3++a2b1+a1b0 mit 0aib1 und 1ib

ist eine narzisstische Zahl mit Basis b, wenn gilt:

ann+an1n+an2n++a1n=a.

Beispiele

Beispiel 1:

Die Dezimalzahl 62 ist eine narzisstische Zahl mit Basis b=4.

Es ist 62=3324 im Vierersystem (es ist 3_42+3_41+2_40=62), und tatsächlich gilt für die dann dreistellige Zahl: 62=3324=33+33+23.

Beispiel 2:

Die Dezimalzahl 2292 ist eine narzisstische Zahl mit Basis b=6.

Es ist 2292=143406 im Sechsersystem (es ist 1_64+4_63+3_62+4_61+0_60=2292), und tatsächlich gilt für die dann fünfstellige Zahl: 2292=143406=15+45+35+45+05.

Eine Liste der narzisstischen Zahlen mit Basis b=10 wurde schon weiter oben angegeben (Vorlage:OEIS).

Es folgt eine Liste der narzisstischen Zahlen mit Basis b, geschrieben im jeweiligen System (wobei aus Ermangelung an weiteren Ziffern A=10,B=11, gesetzt wird) bzw. im Dezimalsystem:

Basis b narzisstische Zahlen zur Basis b narzisstische Zahlen zur Basis 10
2 0, 1 0, 1
3 0, 1, 2, 12, 22, 122 1, 2, 5, 8, 17
4 1, 2, 3, 130, 131, 203, 223, 313, 332, 1103, 3303 (Vorlage:OEIS) 1, 2, 3, 28, 29, 35, 43, 55, 62, 83, 243 (Vorlage:OEIS)
5 1, 2, 3, 4, 23, 33, 103, 433, 2124, 2403, 3134, 124030, 124031, 242423, 434434444, 1143204434402, 14421440424444 (Vorlage:OEIS) 1, 2, 3, 4, 13, 18, 28, 118, 289, 353, 419, 4890, 4891, 9113, 1874374, 338749352, 2415951874 (Vorlage:OEIS)
6 1, 2, 3, 4, 5, 243, 514, 14340, 14341, 14432, 23520, 23521, 44405, 435152, 5435254, 12222215, 555435035, 1053025020422, 1053122514003, 1435403205450, 1435403205451, 1450005114454, 2135254510352, 2145555022413, 2500150125455, 133024510545125, 13435022253535055, 15205355253553320, 15205355253553321, 105144341423554535 (Vorlage:OEIS) 1, 2, 3, 4, 5, 99, 190, 2292, 2293, 2324, 3432, 3433, 6197, 36140, 269458, 391907, 10067135, 2510142206, 2511720147, 3866632806, 3866632807, 3930544834, 4953134588, 5018649129, 6170640875, 124246559501, 4595333541803, 5341093125744, 5341093125745, 19418246235419 (Vorlage:OEIS)
7 1, 2, 3, 4, 5, 6, 13, 34, 44, 63, 250, 251, 305, 505, 12205, 12252, 13350, 13351, 15124, 36034, 205145, 1424553, 1433554, 3126542, 4355653, 6515652, 125543055, 161340144, 254603255, 336133614, 542662326, … (Vorlage:OEIS) 1, 2, 3, 4, 5, 6, 10, 25, 32, 45, 133, 134, 152, 250, 3190, 3222, 3612, 3613, 4183, 9286, 35411, 191334, 193393, 376889, 535069, 794376, 8094840, 10883814, 16219922, 20496270, 32469576, 34403018, 416002778, 416352977, … (Vorlage:OEIS)
8 1, 2, 3, 4, 5, 6, 7, 24, 64, 134, 205, 463, 660, 661, 40663, 42710, 42711, 60007, 62047, 636703, 3352072, 3352272, 3451473, 4217603, 7755336, 16450603, 63717005, 233173324, 3115653067, 4577203604, 61777450236, 147402312024, … (Vorlage:OEIS) 1, 2, 3, 4, 5, 6, 7, 20, 52, 92, 133, 307, 432, 433, 16819, 17864, 17865, 24583, 25639, 212419, 906298, 906426, 938811, 1122179, 2087646, 3821955, 13606405, 40695508, 423056951, 637339524, 6710775966, 13892162580, 32298119799, … (Vorlage:OEIS)
9 1, 2, 3, 4, 5, 6, 7, 8, 45, 55, 150, 151, 570, 571, 2446, 12036, 12336, 14462, 2225764, 6275850, 6275851, 12742452, 356614800, 356614801, 1033366170, 1033366171, 1455770342, 8463825582, 131057577510, 131057577511, …(Vorlage:OEIS) 1, 2, 3, 4, 5, 6, 7, 8, 41, 50, 126, 127, 468, 469, 1824, 8052, 8295, 9857, 1198372, 3357009, 3357010, 6287267, 156608073, 156608074, 403584750, 403584751, 586638974, 3302332571, 42256814922, 42256814923, 114842637961, … (Vorlage:OEIS)
10 siehe oben (Vorlage:OEIS) siehe oben (Vorlage:OEIS)
12 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 25, A5, 577, 668, A83, … 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 29, 125, 811, 944, 1539, 28733, 193084, 887690, 2536330, 6884751, 17116683, 5145662993, 25022977605, 39989277598, 294245206529, 301149802206, 394317605931, 429649124722, 446779986586, … (Vorlage:OEIS)
16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 156, 173, 208, 248, 285, 4A5, 5B0, 5B1, 60B, … 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 342, 371, 520, 584, 645, 1189, 2458, 2729, 1456, 1457, 1547, 1611, 2240, 2241, 2755, 3240, 3689, 3744, 3745, 47314, 79225, 177922, 177954, 368764, 369788, 786656, 786657, 787680, 787681, 811239, 812263, … (Vorlage:OEIS)

Beispiel 3:

Wenn man die k-ten Potenzen der Ziffern einer k-stelligen Zahl n aufsummiert, erhält man (für n=1, 2, 3, 4, …) die folgenden Werte:

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 4, 5, 8, 13, 20, 29, 40, 53, 68, 85, 9, 10, 13, 18, 25, 34, 45, 58, 73, 90, 16, 17, 20, 25, 32, 41, 52, 65, 80, 97, 25, 26, 29, 34, 41, 50, 61, 74, 89, 106, 36, 37, 40, 45, 52, 61, 72, 85, 100, 117, 49, 50, 53, 58, 65, … (Vorlage:OEIS)

Die obige Liste ist so zu deuten: zum Beispiel steht an der 27. Stelle (dieser Wert 27 ist zweistellig) der Wert 53. Wenn man also von 27 die Ziffern mit der Anzahl ihrer Stellen, also 2, potenziert, ergibt es 53. Tatsächlich ist 22+72=53. Erhält man wieder exakt den Wert der Stelle (in diesem Fall wäre es 27 gewesen), hätte man eine narzisstische Zahl gefunden.

Eigenschaften

  • Die Anzahl der narzisstischen Zahlen in einer gegebenen Basis b ist endlich.
Beweis:
Die maximal mögliche Summe von k-ten Potenzen einer k-stelligen Zahl in der Basis b ist k(b1)k. Ab einer gewissen Größe von k gilt aber auf jeden Fall k(b1)k<bk1. Somit darf keine narzisstische Zahlen mit Basis b mehr als k Stellen haben, was bedeutet, dass es nur endlich viele narzisstische Zahlen geben kann.
  • Spezialfall: Jede narzisstische Zahl im Dezimalsystem muss kleiner als 1060 sein.
Beweis:
Wegen der obigen Eigenschaft muss für k-stellige Zahlen gelten: k9k<10k1. Diese Ungleichung hat die Lösung k60.[5]
Somit darf eine narzisstische Zahl im Dezimalsystem nicht größer als 1060 sein.
  • Es gibt nur 88 narzisstische Zahlen im Dezimalsystem. Die größte narzisstische Zahl im Dezimalsystem hat aber nur 39 Stellen (statt den oben angegebenen maximalen 60 Stellen) und ist die folgende:
115.132.219.018.763.992.565.095.597.973.971.522.401=139+139+539++439+039+139
  • Alle einstelligen Zahlen sind narzisstische Zahlen (in jeder Basis).
  • Es gibt mindestens eine zweistellige narzisstische Zahl in einer Basis b genau dann, wenn b2+1 keine Primzahl ist.
Die Anzahl der zweistelligen narzisstischen Zahlen in der Basis b ist dann τ(b2+1)2, wobei τ(b) die Anzahl der positiven Teiler von b ist (zum Beispiel ist τ(10)=4, weil 10 die Teiler 1, 2, 5 und 10 hat).
  • Jede Basis b3, welche kein Vielfaches von 9 ist, hat mindestens eine dreistellige narzisstische Zahl. Die Basen ohne dreistellige narzisstische Zahlen sind die folgenden:
2, 72, 90, 108, 153, 270, 423, 450, 531, 558, 630, 648, 738, 1044, 1098, 1125, 1224, 1242, 1287, 1440, 1503, 1566, 1611, 1620, 1800, 1935, … (Vorlage:OEIS)
Es gibt mit diesen Basen also keine dreistellige Zahl xyzb mit x3+y3+z3=xb2+yb+z.

Perfekte digitale Invariante

Eine Zahl, deren Summe ihrer Ziffern, jeweils potenziert mit irgendeiner Zahl (und nicht mit ihrer Stellenanzahl), wieder die Zahl selbst ergibt, nennt man perfekte digitale Invariante (oder PDI). Diese Zahlen sind allerdings keine narzisstischen Zahlen. Im Gegensatz zu den narzisstischen Zahlen gibt es bei PDIs (mit Basis b) keine obere Schranke für die Größe der Zahl. Man weiß auch nicht, ob es bei gegebener Basis b endlich oder unendlich viele PDIs gibt.

Beispiele:

  • Die Dezimalzahl 4150 hat vier Dezimalstellen, man kann sie aber als Summe von fünften Potenzen ihrer Dezimalstellen darstellen:
4150=45+15+55+05
Sie ist also eine perfekte digitale Invariante, aber keine narzisstische Zahl.
  • Die kleinsten PDIs mit irgendeiner Potenz ihrer Ziffern sind
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084, 194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153, … (Vorlage:OEIS)
Die dazugehörigen Potenzen sind
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 5, 5, 4, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, … (Vorlage:OEIS)
  • In den beiden oberen Listen stehen (zum Beispiel) an 29. Stelle die Zahlen 14459929 und 7. Das bedeutet, dass die 8-stellige Zahl
14459929=17+47+47+57+97+97+27+97 ist.
  • In den beiden oberen Listen sind aber auch narzisstische Zahlen inkludiert. Zum Beispiel sind an 25. Stelle die Zahlen 1741725 und 7. Das bedeutet, dass die 7-stellige Zahl 1741725=17+77+47+17+77+27+57 ist.
  • Die folgende Liste gibt die kleinsten Zahlen an, die gleich sind der Summe ihrer Ziffern mit n-ter Potenz (n=1, 2, 3, …) (die 0 gibt an, dass es keine solche Zahl gibt):
2, 0, 153, 1634, 4150, 548834, 1741725, 24678050, 146511208, 4679307774, 32164049650, 0, 564240140138, 28116440335967, 0, 4338281769391370, 233411150132317, … (Vorlage:OEIS)
Es steht zum Beispiel an der sechsten Stelle 548834. Das bedeutet, dass n=6 ist und dass gilt: 548834=56+46+86+86+36+46

Narzisstische Zahlen mit steigender Potenz

Narzisstische Zahlen mit steigender Potenz sind Zahlen, deren Summe ihrer Ziffern, potenziert mit deren Stelle in der Zahl (von links gezählt), die Zahl selbst ergibt. Also zum Beispiel eine Zahl abc = a1+b2+c3.

Beispiele:

  • 2427=21+42+23+74=2+16+8+2401
  • 2646798=21+62+43+64+75+96+87
  • Folgende Zahlen sind in diesem Sinne narzisstisch:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 89, 135, 175, 518, 598, 1306, 1676, 2427, 2646798, 12157692622039623539 (Vorlage:OEIS)

Narzisstische Zahlen mit konstanter Basis

Narzisstische Zahlen mit konstanter Basis sind Zahlen, bei denen die Basis konstant ist und die Exponenten den Ziffern der Zahl entsprechen.

Beispiel:

4624=44+46+42+44=256+4096+16+256

Wilde narzisstische Zahlen

Wilde narzisstische Zahlen sind Zahlen, bei denen die Weise, auf die sie sich selbst aus ihren Ziffern erzeugen, nicht einheitlich ist.

Beispiel:

24739=24+7!+39=16+5040+19683

Interessante Zahlen

Interessante Zahlen sind noch freier als die wilden narzisstischen Zahlen bei ihrer Erzeugung:

Beispiele:

3456=3!456!
355=35!5
127=1+27
343=(3+4)3

Siehe auch

Literatur

  • The Penguin Dictionary of Curious and Interesting Numbers. David Wells, ISBN 0-14-026149-4

Einzelnachweise