Lineare Unabhängigkeit

Aus testwiki
Zur Navigation springen Zur Suche springen
Linear unabhängige Vektoren in ℝ3
Linear abhängige Vektoren in einer Ebene in ℝ3

In der linearen Algebra wird eine Familie von Vektoren eines Vektorraums linear unabhängig genannt, wenn sich der Nullvektor nur durch eine Linearkombination der Vektoren erzeugen lässt, in der alle Koeffizienten der Kombination auf den Wert null gesetzt werden. Äquivalent dazu ist, dass sich keiner der Vektoren als Linearkombination der anderen Vektoren der Familie darstellen lässt.

Andernfalls heißen sie linear abhängig. In diesem Fall lässt sich mindestens einer der Vektoren (aber nicht notwendigerweise jeder) als Linearkombination der anderen darstellen.

Zum Beispiel sind im dreidimensionalen euklidischen Raum 3 die Vektoren (1,0,0), (0,1,0) und (0,0,1) linear unabhängig. Die Vektoren (2,1,1), (1,0,1) und (3,1,2) sind hingegen linear abhängig, denn der dritte Vektor ist die Summe der beiden ersten, d. h. die Differenz von der Summe der ersten beiden und dem dritten ist der Nullvektor. Die Vektoren (1,2,3), (2,4,6) und (1,1,1) sind wegen 2(1,2,3)+(2,4,6)=(0,0,0) ebenfalls linear abhängig; jedoch ist hier der dritte Vektor nicht als Linearkombination der beiden anderen darstellbar.

Definition

Ist V ein Vektorraum über einem Körper K, so heißen die Vektoren v1,v2,...,vn aus V linear unabhängig, wenn die einzig mögliche Darstellung des Nullvektors als Linearkombination

a1v1+a2v2++anvn=0

mit Koeffizienten a1,a2,,an aus dem Grundkörper K diejenige ist, bei der alle Koeffizienten ai gleich null sind. Lässt sich dagegen der Nullvektor auch nichttrivial (mit Koeffizienten ungleich null) erzeugen, dann sind die Vektoren linear abhängig.[1][2][3]

Ist I eine beliebige Indexmenge, so heißt eine Familie (vi)iI von Vektoren aus V linear unabhängig, falls jede endliche Teilfamilie linear unabhängig ist.[2][3]

Die Familie (vi)iI ist also genau dann linear abhängig, wenn es eine endliche Teilmenge JI gibt, sowie Koeffizienten (aj)jJ, von denen mindestens einer ungleich 0 ist, so dass

jJajvj=0.

Der Nullvektor 0 ist ein Element des Vektorraumes V. Im Gegensatz dazu ist 0 ein Element des Körpers K.

Der Begriff wird auch für Teilmengen eines Vektorraums verwendet: Eine Teilmenge SV eines Vektorraums V heißt linear unabhängig, wenn jede Linearkombination von paarweise verschiedenen Vektoren aus S nur dann den Nullvektor darstellen kann, wenn alle Koeffizienten in dieser Linearkombination den Wert null haben. Man beachte folgenden Unterschied: Ist etwa (v1,v2) eine linear unabhängige Familie, so ist (v1,v1,v2) offenbar eine linear abhängige Familie. Die Menge {v1,v1,v2}={v1,v2} ist dann aber linear unabhängig.

Andere Charakterisierungen und einfache Eigenschaften

  • Die Familie (vi)iI von Elementen eines K-Vektorraums V ist genau dann linear unabhängig, wenn die lineare Abbildung m:K(I)V,(si)iIi:si0sivi den Kern {0} hat.
  • Die Vektoren v1,,vn sind genau dann linear unabhängig, wenn sich keiner von ihnen als Linearkombination der anderen darstellen lässt.
    Diese Aussage gilt nicht im allgemeineren Kontext von Moduln über Ringen.
  • Eine Variante dieser Aussage ist das Abhängigkeitslemma: Sind v1,,vn linear unabhängig und v1,,vn,w linear abhängig, so lässt sich w als Linearkombination von v1,,vn schreiben.
  • Ist eine Familie von Vektoren linear unabhängig, so ist jede Teilfamilie dieser Familie ebenfalls linear unabhängig. Ist eine Familie hingegen linear abhängig, so ist jede Familie, die diese abhängige Familie beinhaltet, ebenso linear abhängig.
  • Elementare Umformungen der Vektoren verändern die lineare Abhängigkeit oder die lineare Unabhängigkeit nicht.
  • Ist einer der vi der Nullvektor (hier: Sei vj=0), so sind diese linear abhängig – der Nullvektor kann erzeugt werden, indem alle ai=0 gesetzt werden mit Ausnahme von aj, welches als Koeffizient des Nullvektors vj beliebig (also insbesondere auch ungleich null) sein darf.

Ermittlung mittels Determinante

Hat man n Vektoren eines n-dimensionalen Vektorraums als Zeilen- oder Spaltenvektoren bzgl. einer festen Basis gegeben, so kann man deren lineare Unabhängigkeit dadurch prüfen, dass man diese n Zeilen- bzw. Spaltenvektoren zu einer n×n-Matrix zusammenfasst und dann deren Determinante ausrechnet. Die Vektoren sind genau dann linear unabhängig, wenn die Determinante ungleich 0 ist.

Basis eines Vektorraums

Vorlage:Hauptartikel

Eine wichtige Rolle spielt das Konzept der linear unabhängigen Vektoren bei der Definition beziehungsweise beim Umgang mit Vektorraumbasen. Eine Basis eines Vektorraums ist ein linear unabhängiges Erzeugendensystem. Basen erlauben es, insbesondere bei endlichdimensionalen Vektorräumen mit Koordinaten zu rechnen.

Beispiele

  • u und v sind linear unabhängig und definieren die Ebene P.
  • u, v und w sind linear abhängig, weil sie in derselben Ebene liegen.
  • u und j sind linear abhängig, da sie parallel zueinander verlaufen.
  • u, v und k sind linear unabhängig, da u und v voneinander unabhängig sind und k sich nicht als lineare Kombination der beiden darstellen lässt bzw. weil sie nicht auf einer gemeinsamen Ebene liegen. Die drei Vektoren definieren einen drei-dimensionalen Raum.
  • Die Vektoren 0 (Nullvektor) und k sind linear abhängig, da  0=0k

Einzelner Vektor

Der Vektor v sei ein Element des Vektorraums V über K. Dann ist der einzelne Vektor v für sich genau dann linear unabhängig, wenn er nicht der Nullvektor ist.

Denn aus der Definition des Vektorraums folgt, dass wenn

av=0 mit aK, vV

nur a=0 oder v=0 sein kann.

Vektoren in der Ebene

Die Vektoren u=(11) und v=(32) sind in 2 linear unabhängig.

Beweis: Für a,b gelte

au+bv=0,

d. h.

a(11)+b(32)=(00)

Dann gilt

(a3ba+2b)=(00),

also

a3b=0  a+2b=0.

Dieses Gleichungssystem ist nur für die Lösung a=0, b=0 (die sogenannte triviale Lösung) erfüllt; d. h. u und v sind linear unabhängig.

Standardbasis im n-dimensionalen Raum

Die kanonischen Einheitsvektoren

e1=(1,0,0,,0),e2=(0,1,0,,0),en=(0,0,0,,1)

sind im Vektorraum n linear unabhängig.

Beweis:    Für a1,a2,,an gelte

a1e1+a2e2++anen=0.

Dann gilt aber auch

a1e1+a2e2++anen=(a1,a2, ,an)=0,

und daraus folgt, dass ai=0 für alle i{1,2,,n}.

Funktionen als Vektoren

Sei V der Vektorraum aller Funktionen f:. Die beiden Funktionen et und e2t in V sind linear unabhängig.

Beweis: Es seien a,b und es gelte

aet+be2t=0

für alle t. Leitet man diese Gleichung nach t ab, dann erhält man eine zweite Gleichung

aet+2be2t=0.

Indem man von der zweiten Gleichung die erste subtrahiert, erhält man

be2t=0.

Da diese Gleichung für alle t und damit insbesondere auch für t=0 gelten muss, folgt daraus durch Einsetzen von t=0, dass b=0 sein muss. Setzt man das so berechnete b wieder in die erste Gleichung ein, dann ergibt sich

aet+0=0.

Daraus folgt wieder, dass (für t=0) a=0 sein muss.

Da die erste Gleichung nur für a=0 und b=0 lösbar ist, sind die beiden Funktionen et und e2t linear unabhängig.

Vorlage:Siehe auch

Reihen

Sei V der Vektorraum aller reellwertigen stetigen Funktionen f:(0,1) auf dem offenen Einheitsintervall. Dann gilt zwar

11x=n=0xn,

aber dennoch sind 11x,1,x,x2, linear unabhängig. Linearkombinationen aus Potenzen von x sind nämlich nur Polynome und keine allgemeinen Potenzreihen, insbesondere also in der Nähe von 1 beschränkt, so dass sich 11x nicht als Linearkombination von Potenzen darstellen lässt.

Zeilen und Spalten einer Matrix

Interessant ist auch die Frage, ob die Zeilen einer Matrix linear unabhängig sind oder nicht. Dabei werden die Zeilen als Vektoren betrachtet. Falls die Zeilen einer quadratischen Matrix linear unabhängig sind, so nennt man die Matrix regulär, andernfalls singulär. Die Spalten einer quadratischen Matrix sind genau dann linear unabhängig, wenn die Zeilen linear unabhängig sind. Beispiel einer Folge von regulären Matrizen: Hilbert-Matrix.

Rationale Unabhängigkeit

Reelle Zahlen, die über den rationalen Zahlen als Koeffizienten linear unabhängig sind, nennt man rational unabhängig oder inkommensurabel. Die Zahlen {1,12} sind demnach rational unabhängig oder inkommensurabel, die Zahlen {1,12,1+2} dagegen rational abhängig.

Verallgemeinerungen

Die Definition linear unabhängiger Vektoren lässt sich analog auf Elemente eines Moduls anwenden. In diesem Zusammenhang werden linear unabhängige Familien auch frei genannt (siehe auch: freier Modul).

Der Begriff der linearen Unabhängigkeit lässt sich weiter zu einer Betrachtung von unabhängigen Mengen verallgemeinern, siehe dazu Matroid.

Literatur

  • Siegfried Bosch: Lineare Algebra. 5. Auflage, Springer, Berlin/Heidelberg 2014, ISBN 978-3-642-55259-5, Kapitel 1.5.
  • Albrecht Beutelsbacher: Lineare Algebra: Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. 8. Auflage, Springer, Gießen 2014, ISBN 978-3-658-02412-3

Einzelnachweise