Kompressionsmodul

Aus testwiki
Zur Navigation springen Zur Suche springen
Datei:Isostatic pressure deformation.svg
Verformung unter gleichmäßigem Druck

Der Kompressionsmodul (Formelzeichen K) ist eine intensive und stoffeigene physikalische Größe aus der Elastizitätslehre. Er beschreibt, welche allseitige Druckänderung nötig ist, um eine bestimmte Volumenänderung hervorzurufen (dabei darf kein Phasenübergang auftreten).

Die SI-Einheit des Kompressionsmoduls ist Pascal bzw. Newton pro Quadratmeter.

Dass Stoffe einer Kompression (Verdichtung, Komprimierung) Widerstand entgegensetzen, beruht in erster Linie auf Wechselwirkungen der enthaltenen Elektronen.

Allgemeines

Die Kompression ist ein (allseitiges) Zusammendrücken eines Körpers/massegefüllten Raumes, welcher sein Volumen verringert und seine Dichte (Massendichte) erhöht. Körper werden nur als kompressibel bezeichnet, wenn die auftretenden Druckveränderungen ausreichen, um merkliche Dichteänderungen zu verursachen, was meist (nur) bei Gasen der Fall ist. Wenn keine merklichen Dichteänderungen auftreten, nennt man die Körper inkompressibel (siehe auch inkompressibles Fluid).

In der Festigkeitslehre wird im Allgemeinen jeder Festkörper als verformbar angenommen (sowohl in Form (reiner Schub) als auch bzgl. hydrostatischer Volumenveränderungen (kompressibel)). Nach dem Vorgang ist der Körper verdichtet (komprimiert). In der Regel erfolgt nur eine elastische Verformung, d. h., beim Nachlassen des Drucks kehrt sich die Verdichtung wieder um, der Körper dehnt sich wieder aus (Expansion). Abhängig vom Material kann aber auch eine bleibende Änderung der Struktur eintreten (z. B. plastische Verformung, Zerbröseln von Beton, Kornumlagerungen im Grundbau).

Der Kompressionsmodul beschreibt nur den spontan elastischen Anteil (des hydrostatischen Anteiles) der Volumenänderung, weder plastische noch bruchmechanische noch viskoelastische Anteile gehen ein, auch eventuelle thermische Verformungen werden vorher abgezogen.

Die Beziehung zwischen dem Volumen eines Festkörpers und dem auf ihn wirkenden äußeren hydrostatischen Druck wird beschrieben durch die Gleichungen nach Murnaghan und Birch.

Definition

Der Kompressionsmodul ist definiert über die spontan elastische Veränderung des Volumens (und damit der Dichte) zufolge eines Drucks bzw. mechanischer Spannung:

K:=VdpdV<0=dpdV/V>0

Dabei stehen die einzelnen Formelzeichen für folgende Größen:

V Volumen
dp infinitesimale Druckänderung
dV infinitesimale Volumenänderung
dV/V relative Volumenänderung

Das negative Vorzeichen wurde gewählt, da Druckzuwachs das Volumen verringert (dV/dp ist negativ), praktischerweise K aber positiv sein sollte. Der Kompressionsmodul hängt u. a. von der Temperatur und vom Druck ab.

Der Kompressionsmodul stellt die Spannungs- bzw. jene fiktive Druckdifferenz zum aktuellen Druck dar, bei dem das Volumen zu Null werden würde, wenn lineare Elastizität, d. h. dp/dV=const, und geometrische Linearität in den Ortskoordinaten (somit nicht in den Materialkoordinaten) gegeben wäre, also der Kompressionsmodul bei höheren Drücken nicht ansteigen würde.

Kompressibilität

Vorlage:Weiterleitungshinweis

Datei:Glaskompressionsmodul.gif
Einflüsse der Zugabe ausgewählter Glasbestandteile auf den Kompressionsmodul eines speziellen Basisglases.[1]

Bei Gasen und Flüssigkeiten wird statt des Kompressionsmoduls oft sein Kehrwert verwendet. Dieser wird Kompressibilität (Formelzeichen: κ oder χ) oder auch Kompressibilitätskoeffizient genannt:

κ=1K=dV/Vdp=1VdVdp.

Man unterscheidet

In der Näherung eines idealen Gases berechnet sich

wobei γ (oft auch als κ bezeichnet) der Isentropenexponent ist.

Die Kompressibilität von Flüssigkeiten wurde lange bezweifelt, bis sie John Canton 1761, Jacob Perkins 1820 und Hans Christian Oersted 1822 durch Messungen nachweisen konnten.

Kompressionsmodul von Festkörpern mit isotropem Materialverhalten

Unter Voraussetzung linear-elastischen Verhaltens und isotropen Materials kann man den Kompressionsmodul K aus anderen Elastizitätskonstanten berechnen:

K=E36ν=GE9G3E=2G(1+ν)3(12ν)

mit

EElastizitätsmodul
GSchubmodul
ν  – Poissonzahl

Wasser

Datei:Wasserdruck kompressibilitaet.png
Wasserdruck mit und ohne Kompressibilität

Der Kompressionsmodul von Wasser beträgt bei einer Temperatur von 10 °C unter Normaldruck 2,08·109 Pa und 2,68·109 Pa bei 100 MPa.

Bezieht man die Kompressibilität des Wassers in die Berechnung des Drucks mit ein, ergibt sich mit der Kompressibilität

κ=dVVdp=0,51GPa

das rechte Diagramm.

Bei einer Dichte von 1000 kg/m³ an der Oberfläche erhöht sich durch die Kompressibilität des Wassers die Dichte in 12 km Tiefe auf dort 1051 kg/m³. Der zusätzliche Druck durch die höhere Dichte von Wasser in der Tiefe beläuft sich auf etwa 2,6 Prozent gegenüber dem Wert bei Vernachlässigung der Kompressibilität. Hierbei bleiben jedoch die im Meer weiterhin vorherrschenden Einflüsse von Temperatur, Gas- und Salzgehalten unberücksichtigt.

Neutronensterne

Bei Neutronensternen sind unter dem Druck der Gravitation alle Atomhüllen zusammengebrochen und aus den Elektronen der Hüllen und den Protonen der Atomkerne Neutronen entstanden. Neutronen sind die inkompressibelste Form der Materie, die bekannt ist. Ihr Kompressionsmodul liegt 20 Größenordnungen über dem von Diamant unter Normalbedingungen.

Beispiele

Kompressionsmodul einiger Stoffe
Stoff Kompressionsmodul in GPa
Luft (unter
Normalbedingung)
Vorlage:01,01·10−4 (isotherm)
Vorlage:0Vorlage:01,42·10−4 (adiabatisch)
Helium (fest) Vorlage:00,05 (geschätzt)
Methanol Vorlage:00,823
Ethanol Vorlage:00,896
Aceton Vorlage:00,92
Öl Vorlage:01…1,6[2]
Caesium Vorlage:0Vorlage:01,6
Wasser Vorlage:02,08 (Vorlage:00,1 MPa)
Vorlage:02,68 (100Vorlage:0 MPa)
Rubidium Vorlage:02,5
Glycerin Vorlage:04,35
Natrium Vorlage:06,3
Iod Vorlage:0Vorlage:07,7
Methanhydrat Vorlage:09,1 (Mittelwert im Bereich 10…100 MPa)
Barium Vorlage:09,6
Lithium Vorlage:011
Quecksilber Vorlage:028,5
Bismut Vorlage:031
Glas Vorlage:035…55
Blei Vorlage:046
Aluminium Vorlage:076
Stahl 160
Gold 180
Borcarbid 271
Magnesiumoxid 277
Bor 320
Rhodium 380
Diamant 442
Osmium 462
Aggregierte Diamant-
Nanostäbchen
(ADNR)
491 (härtestes bekanntes Material[3])
Hintergrundfarben: Vorlage:Farbindex Vorlage:Farbindex Vorlage:Farbindex

Vorlage:Absatz

Umrechnung zwischen den elastischen Konstanten isotroper Festkörper

Der Modul… …ergibt sich aus:[4]
(K,E) (K,λ) (K,G) (K,ν) (E,λ) (E,G) (E,ν) (λ,G) (λ,ν) (G,ν) (G,M)
Kompressionsmodul K K K K K (E+3λ)/6+(E+3λ)24λE6 EG3(3GE) E3(12ν) λ+2G3 λ(1+ν)3ν 2G(1+ν)3(12ν) M4G3
Elastizitätsmodul E E 9K(Kλ)3Kλ 9KG3K+G 3K(12ν) E E E G(3λ+2G)λ+G λ(1+ν)(12ν)ν 2G(1+ν) G(3M4G)MG
1. Lamé-Konstante λ 3K(3KE)9KE λ K2G3 3Kν1+ν λ G(E2G)3GE Eν(1+ν)(12ν) λ λ 2Gν12ν M2G
Schubmodul G bzw. μ
(2. Lamé-Konstante)
3KE9KE 3(Kλ)2 G 3K(12ν)2(1+ν) (E3λ)+(E3λ)2+8λE4 G E2(1+ν) G λ(12ν)2ν G G
Poissonzahl ν 3KE6K λ3Kλ 3K2G2(3K+G) ν (E+λ)+(E+λ)2+8λ24λ E2G1 ν λ2(λ+G) ν ν M2G2M2G
Longitudinalmodul M 3K(3K+E)9KE 3K2λ K+4G3 3K(1ν)1+ν Eλ+E2+9λ2+2Eλ2 G(4GE)3GE E(1ν)(1+ν)(12ν) λ+2G λ(1ν)ν 2G(1ν)12ν M

Siehe auch

Einzelnachweise

  1. Glassproperties.com Calculation of the Bulk Modulus for Glasses
  2. Vorlage:Literatur
  3. Vorlage:Literatur
  4. G. Mavko, T. Mukerji, J. Dvorkin: The Rock Physics Handbook. Cambridge University Press, 2003, ISBN 0-521-54344-4 (paperback).