Injektive Auflösung

Aus testwiki
Zur Navigation springen Zur Suche springen

Im mathematischen Gebiet der Kategorientheorie und der homologischen Algebra ist eine injektive Auflösung eine lange exakte Sequenz aus injektiven Objekten, die mit einem gegebenen Objekt beginnt.

Definition

Formal sei C eine abelsche Kategorie und A ein Objekt aus C. Dann heißt eine lange exakte Sequenz der Form

0AI0I1I2

injektive Auflösung von A, wenn sämtliche Ii injektiv sind.[1]

Existenz

Ist in der abelschen Kategorie C jedes Objekt Unterobjekt eines injektiven Objektes, d. h. gibt es zu jedem Objekt XOb(C) einen Monomorphismus XI, wobei I injektiv ist, so sagt man auch, C besitze genügend viele injektive Objekte. Ein wichtiges Beispiel solcher Kategorien ist die Kategorie der Links-Moduln über einem Ring.

Unter diesen Bedingungen gibt es auch zu jedem Objekt A eine injektive Auflösung. Zunächst existiert nämlich nach Voraussetzung ein Monomorphismus i0:AI0, dann weiter ein Monomorphismus i1:coker(i0)I1 und dann per Induktion jeweils weiter in+1:coker(in)In+1.

Eigenschaften

Ist

0AI0I1I2

eine injektive Auflösung und

0AA'0A'1A'2

eine exakte Sequenz, so lässt sich jeder C-Homomorphismus f:AA (nicht notwendigerweise eindeutig) zu einem kommutativen Diagramm

0AA'0A'1A'20AI0I1I2

ergänzen. Eine wichtige Folgerung aus dieser Eigenschaft ist, dass je zwei injektive Auflösungen eines Objektes vom selben Homotopietyp sind.[2]

Siehe auch

Einzelnachweise

  1. P. J. Hilton: Lectures in Homological Algebra, American Mathematical Society (1971), ISBN 0-8218-1657-8, Definition 2.6
  2. Peter Hilton, Urs Stammbach: A course in homological algebra, 1. Auflage 1970, ISBN 3-540-90032-2, Kapitel IV, Theorem 4.4 und Satz 4.5

Vorlage:Navigationsleiste Kategorientheorie