Coulombsches Gesetz

Aus testwiki
Zur Navigation springen Zur Suche springen

Das coulombsche Gesetz oder Coulomb-Gesetz ist die Basis der Elektrostatik. Es beschreibt die zwischen zwei Punktladungen wirkende Kraft.[1] Es gilt auch für kugelsymmetrisch verteilte elektrische Ladungen, die räumlich getrennt sind.

Der Betrag dieser Kraft ist proportional zum Produkt der beiden Ladungsmengen und umgekehrt proportional zum Quadrat des Abstandes der Kugelmittelpunkte. Die Kraft wirkt je nach Vorzeichen der Ladungen anziehend oder abstoßend in Richtung der Verbindungsgeraden der Mittelpunkte. Im anziehenden Fall verhält sie sich also ganz entsprechend wie die Kraft zwischen zwei Punktmassen nach dem Gravitationsgesetz.

Bei mehr als zwei Ladungen werden die einzelnen Kraftvektoren gemäß dem Superpositionsprinzip addiert.

Das coulombsche Gesetz ist Grundlage der elektrischen Influenz.

Coulomb-Kraft

Grundmechanismus: Ladungen mit gleichem Vorzeichen stoßen sich ab, Ladungen mit unterschiedlichen Vorzeichen ziehen sich an.
Veranschaulichung der quadratischen Abnahme mit der Entfernung nach Martin Wagenschein
Torsionspendel von Coulomb, mit dem er Kraftmessungen durchführte

Das coulombsche Gesetz wurde von Charles Augustin de Coulomb um 1785 entdeckt und in umfangreichen Experimenten bestätigt. Im Internationalen Einheitensystem, in skalarer Form und im Vakuum ist die Kraft demnach

F=14πε0q1q2r2,
q1, q2 kugelsymmetrisch verteilte Ladungsmengen
r Abstand zwischen den Mittelpunkten der Ladungsmengen
ε0 elektrische Feldkonstante

Vektorform

Die vektorielle Notation diskreter Ladungen liefert das Coulomb-Kraftfeld, dem eine kugelsymmetrische Probeladung q1 im Feld einer zweiten kugelsymmetrischen Ladung q2 ausgesetzt ist, wie folgt:

F12(r1)=q1q24πε0e12|r1r2|2
F12 Kraft auf die Probeladung q1, hervorgerufen von der Ladung q2
r1,r2 Ortsvektoren der beiden Ladungsmittelpunkte
e12 Einheitsvektor, der von q2 (entlang der Verbindungslinie beider Ladungsmittelpunkte) in Richtung q1 zeigt

Wie zu sehen, müssen sich gleichnamige Ladungen, d. h. solche gleichen Vorzeichens, dabei obiger Festlegung gemäß abstoßen, da die Kraft F12 in solchem Fall dieselbe Orientierung wie e12 besitzt, während sich Ladungen mit ungleichem Vorzeichen (ungleichnamige Ladungen) anziehen, da die Kraft F12 dann (analog zum newtonschen Gravitationsgesetz) die entgegengesetzte Orientierung von e12 besitzt.

Eine alternative Formulierung erhält man, indem man e12=r1r2|r1r2| in die Formel einsetzt:

F12(r1)=q1q24πε0r1r2|r1r2|3

Wird der Koordinatenursprung an die Position der Ladung q2 gelegt, vereinfacht sich diese Gleichung zu:

F12(r1)=q1q24πε0|r1|3 r1.

Weiter ist dann

E(r)=q24πε0r3 r

der Vektor der Feldstärke des von der Zentralladung q2 erzeugten elektrischen Feldes an der Stelle r, d. h. im Abstand r vom Ursprung.

Wirken mehrere diskrete im Raum verteilte Ladungen qj auf die Probeladung q1, so erhält man die gesamte auf q1 ausgeübte Kraft durch Vektoraddition:

F1(r1)=q114πε0j>1qjr1rj|r1rj|3

Werden die das Feld erzeugenden Ladungen qj durch eine im Raum verteilte Ladungswolke mit Ladungsdichte ρ(r) ersetzt, tritt an die Stelle der Summe ein Volumenintegral:

F1(r)=q114πε0ρ(r)(rr)|rr|3d3r.

Das coulombsche Gesetz in der eingangs gegebenen Form ist dabei als Spezialfall für eine punktförmige Ladungsverteilung in dieser Formel enthalten. Umgekehrt kann mittels Superpositionsprinzip auch diese allgemeinere Form aus dem coulombschen Gesetz hergeleitet werden.

Vorlage:AnkerCoulomb-Konstante

Vorlage:Infobox Physikalische Konstante Der in den obigen Gleichungen auftretende Term

kC=14πε0=14πμ0c2

wird auch als Coulomb-Konstante bezeichnet. Da die magnetische Feldkonstante μ0 fast genau den Wert 4π107NA2 hat (die relative Abweichung beträgt ca. Vorlage:ZahlExp; bis zur Neudefinition der SI-Einheiten von 2019 galt der Wert exakt),[2] hat kC fast genau den Wert 107c2NA2.

Form in CGS-Systemen

In Gaußschen Einheiten und in anderen CGS-Einheiten wird das coulombsche Gesetz zur Definition der elektrischen Ladung genutzt. Eine Ladungseinheit wirkt auf eine zweite im Abstand 1 cm mit der Kraft 1 dyn. Die elektrische Basiseinheit der Einheitensysteme SI, CGS-ESU und CGS-EMU unterscheidet sich prinzipiell nur durch die Festlegung von μ0:

  • Im CGS-ESU ist μ0=4π/c2. Daher hat die Coulomb-Konstante in diesem Einheitensystem den Wert kC=1.
  • Im CGS-EMU ist μ0=4π. Daher hat in diesem Einheitensystem die Coulomb-Konstante den Wert kC=c2.

Coulomb-Potential

Vorlage:Hauptartikel Das elektrische Feld ist, solange keine zeitliche Änderung des magnetischen Felds auftritt, wirbelfrei und die Energiedifferenz beim Transfer einer Ladung von Punkt A zu Punkt B daher in diesem Fall unabhängig vom konkret zurückgelegten Weg (siehe auch: konservatives Kraftfeld). Entsprechend kann man das elektrische Feld und die elektrische Kraft auch durch ein Potential beschreiben.

Für den Fall der einfachen Coulomb-Kraft ergibt sich das Coulomb-Potential, das für eine einzelne Punktladung Q wie folgt beschrieben werden kann:

Φ(r)=Eds=14πε0Q|r|+C

Dabei wird die beliebige Integrationskonstante C typischerweise null gesetzt, so dass das Potential im Unendlichen verschwindet. Die Potentialdifferenz zwischen zwei Punkten ist der Spannungsabfall U zwischen diesen beiden Punkten. Das Coulomb-Potential gilt exakt nur für ruhende Ladungen. Für bewegte Punktladungen dagegen, bei denen auch Magnetfelder ins Spiel kommen, wird aus dem Coulomb-Potential ein Liénard-Wiechert-Potential.

Die potentielle elektrische Energie Wpot ist ebenfalls ein Potential, nun bezüglich der elektrischen Kraft:

Wpot(r)=Fds=qEds=qΦ(r)=14πε0qQ|r|+C

Auch hier ist es üblich, die Randbedingung so zu wählen, dass die potentielle Energie im Unendlichen Null wird, C also auch hier gleich null ist.

Coulomb-Kraft in einem Medium

Das coulombsche Gesetz lässt sich auf einfache Weise auf den Fall von Ladungen in homogenen, isotropen, linearen Medien erweitern. Das die Ladungen umgebende Material muss dazu in guter Näherung diese Eigenschaften besitzen:

  • Es ist elektrisch neutral.
  • Es füllt den Raum zwischen den Ladungen und um diese herum gleichmäßig (homogen) aus.
  • Die Polarisierbarkeit des Mediums ist richtungsunabhängig.
  • Die Polarisierung ist proportional zum elektrischen Feld, das von den Ladungen erzeugt wird.

Insbesondere verlangt die Homogenität, dass der atomare Charakter der Materie im Vergleich zum Abstand der Ladungen vernachlässigbar ist.

Für solche Medien schreibt sich das coulombsche Gesetz in gleicher Form wie im Vakuum, mit dem einzigen Unterschied, dass ε0 durch ε=ε0εr ersetzt wird:

F=14πεq1q2r2

Die relative Permittivität εr ist bei isotropen Medien eine Materialkonstante, die der Polarisierbarkeit des Mediums Rechnung trägt. Sie kann sowohl durch Messungen als auch aus theoretischen Überlegungen gewonnen werden.

In der Umkehrung gilt im Vakuum εr=1.

Literatur

  • Dieter Meschede: Gerthsen Physik. 23. Auflage. Springer, Berlin / Heidelberg / New York 2006, ISBN 3-540-25421-8; 25. Auflage: 2015, ISBN 978-3-662-45976-8.

Vorlage:Commonscat

Einzelnachweise

Vorlage:Normdaten