Hopf-Verschlingung

Aus testwiki
Version vom 27. September 2022, 09:30 Uhr von imported>Claude J (Hopf-Faserung und Homotopiegruppen, Hopf-Invariante)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Datei:Hopt link.webm

Hopf-Verschlingung

In der Knotentheorie, einem Teilgebiet der Mathematik, ist die Hopf-Verschlingung (auch Hopf-Link) das einfachste Beispiel einer Verschlingung zweier Kreise.

Hopf-Verschlingung

Die Hopf-Verschlingung ist eine Verschlingung bestehend aus zwei Unknoten (d. h. unverknoteten Kreisen), deren Verschlingungszahl (je nach Orientierung) plus oder minus 1 beträgt.

Ein konkretes Modell sind zum Beispiel die im 3 durch (cost,sint,0) und (cost+1,0,sint) parametrisierten Kreise.

Topologie des Komplements

Das Komplement der Hopf-Verschlingung in der 3-Sphäre S3 ist homöomorph zu S1×S1×(0,1). Die Linkgruppe, also die Fundamentalgruppe des Komplements, ist isomorph zu ×, der freien abelschen Gruppe mit zwei Erzeugern.

Invarianten

Das Jones-Polynom ist

V(t)=tt1,

das HOMFLY-Polynom ist

P(z,α)=z1(α1α3)zα1,

die Hopf-Verschlingung ist der (2,2)-Torus-Link und sie ist der Abschluss des Zopfes σ12.

Hopf-Faserung und Homotopiegruppen, Hopf-Invariante

Heinz Hopf untersuchte 1931 die Hopf-Faserung

h:S3S2

und stellte fest, dass je zwei Fasern eine Hopf-Verschlingung bilden.

Allgemein definierte er für Abbildungen f:S3S2 die heute als Hopf-Invariante bezeichnete Invariante H(f) als Verschlingungszahl der Urbilder zweier regulärer Werte von f und er bewies, dass die Zuordnung

Shingon-shu Buzan-ha crest
fH(f)

einen Isomorphismus

π3(S2)

ergibt.

Vorkommen in Kunst, Wissenschaft und Philosophie

Catenane
  • Die Hopf-Verschlingung wird von der dem Shingon-shū zuzuordnenden buddhistischen Sekte Buzan-ha als Symbol verwendet.
  • Catenane stellen eine Hopf-Verschlingung dar.
  • Die Hopf-Verschlingung kommt in zahlreichen Skulpturen des japanischen Künstlers Keizo Ushio vor.

Literatur

  • Heinz Hopf: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104 (1931), 637–665 (PDF)
  • Colin Adams: Das Knotenbuch. Spektrum Akademischer Verlag (1995). ISBN 978-3860253380

Vorlage:Commonscat