Hyperbolisches Volumen

Aus testwiki
Version vom 12. Juni 2021, 11:55 Uhr von imported>Butäzigä (Topologische Definitionen)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Vorlage:Dieser Artikel In der Topologie, einem Teilgebiet der Mathematik, ist das hyperbolische Volumen das Volumen einer hyperbolischen Mannigfaltigkeit. (Häufig wird auch vom hyperbolischen Volumen eines Knotens oder einer Verschlingung gesprochen, womit das hyperbolische Volumen des Komplements gemeint ist.)

Hyperbolisches Volumen ist eine topologische Invariante, weil es nach dem Starrheitssatz von Mostow-Prasad auf einer Mannigfaltigkeit der Dimension 3 höchstens eine hyperbolische Metrik endlichen Volumens geben kann.

Beliebige Dimensionen

Flächen

Auf einer geschlossenen, orientierbaren Fläche vom Geschlecht g2 ist die hyperbolische Metrik nicht eindeutig, sondern es gibt einen (6g6)-dimensionalen Modulraum hyperbolischer Metriken, den sogenannten Teichmüller-Raum. Es folgt aber aus dem Satz von Gauß-Bonnet, dass alle diese Metriken dasselbe Volumen

Area(Sg)=4π(g1)

haben. Insbesondere ist auch in Dimension 2 das hyperbolische Volumen eine topologische Invariante, obwohl in dieser Dimension der Mostowsche Starrheitssatz nicht gilt.

Gerade Dimensionen

Aus dem Satz von Gauß-Bonnet-Chern folgt, dass das hyperbolische Volumen gerade-dimensionaler Mannigfaltigkeiten proportional zur Euler-Charakteristik mit einem nur von der Dimension abhängenden Proportionalitätsfaktor ist. Der Faktor ist ein rationales Vielfaches von π12dim(M). Zum Beispiel hat man für hyperbolische 4-Mannigfaltigkeiten die Formel Vol(M)=43π2χ(M).

Ungerade Dimensionen

Auch für ungerade Dimensionen (mit Ausnahme der Dimension 3) bilden die hyperbolischen Volumina eine diskrete Teilmenge der reellen Zahlen.[1]

Topologische Definitionen

Aus dem Mostow-Prasad-Starrheitssatz folgt, dass hyperbolisches Volumen eine topologische Invariante ist. Eine erste topologische Definition gab Gromow mit dem simplizialen Volumen, welches für beliebige Mannigfaltigkeiten definiert ist und im Fall hyperbolischer Mannigfaltigkeiten (bis auf einen nur von der Dimension abhängenden Faktor) gerade das Volumen gibt.

Andere topologische Definitionen benutzen die Blochgruppe oder die Homologie der Isometriegruppe des hyperbolischen Raumes.

Die Volumenvermutung stellt einen Zusammenhang zwischen hyperbolischem Volumen und Quanteninvarianten von Knoten her, die bisher aber nur in wenigen Fällen bewiesen wurde.

Zahlentheoretische Eigenschaften

Im 3-dimensionalen Fall kann man das Volumen auch mit Hilfe der Bloch-Gruppe berechnen und erhält auf diese Weise insbesondere, dass hyperbolische Volumen von 3-Mannigfaltigkeiten sich stets als Summen von Bloch-Wigner-Dilogarithmen algebraischer Zahlen darstellen lassen. Analoge Vermutungen (mit passenden Varianten des Polylogarithmus) gibt es auch in höheren ungeraden Dimensionen[2], während in geraden Dimensionen hyperbolische Volumina stets rationale Vielfache von Potenzen von π sind.

Das Volumen arithmetischer hyperbolischer Mannigfaltigkeiten kann mit Prasads Volumenformel bestimmt werden.

3-Mannigfaltigkeiten

Mannigfaltigkeiten endlichen Volumens

Aus dem Lemma von Margulis folgt, dass eine orientierbare, vollständige, hyperbolische 3-Mannigfaltigkeit endlichen Volumens die Vereinigung einer von Tori berandeten kompakten Untermannigfaltigkeit und einer endlichen Menge von Spitzen (Quotienten von Horobällen modulo -Wirkungen) ist.

Satz von Jørgensen

Die hyperbolischen Volumina von 3-Mannigfaltigkeiten bilden eine wohlgeordnete Teilmenge der reellen Zahlen, d. h. jede Familie hyperbolischer 3-Mannigfaltigkeiten hat ein Element kleinsten Volumens. Es gibt jeweils nur endlich viele 3-Mannigfaltigkeiten mit demselben Volumen.

Zu jeder Konstante C>0 gibt es nur endlich viele Homöomorphie-Typen des dicken Teils M(ϵ,) für vollständige hyperbolische 3-Mannigfaltigkeiten M vom Volumen C. Es gibt also eine Verschlingung LCS3, so dass sich alle vollständigen hyperbolische 3-Mannigfaltigkeiten vom Volumen C durch Dehn-Chirurgie an LC gewinnen lassen.[3]

Dehn-Chirurgie

Es sei N eine nichtkompakte hyperbolische 3-Mannigfaltigkeit endlichen Volumens, zum Beispiel das Komplement einer hyperbolischen Verschlingung. Als Dehn-Fūllung bezeichnet man die durch Ankleben von Volltori an die Randkomponenten erhaltenen Mannigfaltigkeiten. (Im Falle eines Knotenkomplements entspricht dies dem Resultat einer Dehn-Chirurgie.) Ein Satz von Thurston besagt, dass fast alle Dehn-Füllungen einer hyperbolischen Mannigfaltigkeit wieder hyperbolisch sind. Für die Volumina der durch Dehn-Füllung an N konstruierten Mannigfaltigkeiten M gilt

Vol(M)<Vol(N)

und die Folge dieser Volumina konvergiert gegen Vol(N). Ähnlich zum Satz von Jørgensen kann man beweisen, dass es zu jeder Konstante C eine endliche Menge M1,,Mk hyperbolischer Mannigfaltigkeiten gibt, so dass alle hyperbolischen Mannigfaltigkeiten vom Volumen C durch Dehn-Füllung aus einer dieser Mannigfaltigkeiten entstehen.[4]

Die Menge der Volumina hyperbolischer 3-Mannigfaltigkeiten hat demzufolge Kardinalität ωω. Es gibt ein kleinstes Volumen x1 (das Volumen der Weeks-Mannigfaltigkeit), dann Volumina x1<x2<x3<, dann den ersten Häufungspunkt xω (das Volumen des Achterknoten-Komplements), das das kleinste Volumen einer nichtkompakten 3-Mannigfaltigkeit ist, später xω2 als das kleinste Volumen einer Mannigfaltigkeit mit 2 Spitzen, und so fort.[5]

Mannigfaltigkeiten kleinsten Volumens

Gabai-Meyerhoff-Milley entwickelten die Mom-Technologie, um vollständige Listen hyperbolischer Mannigfaltigkeiten kleinen Volumens zu erstellen. Eine Mom-n-Mannigfaltigkeit entsteht aus T2×I durch Ankleben von je n 1- und 2-Henkeln, so dass jeder 2-Henkel über genau drei 1-Henkel läuft und jeder 1-Henkel mindestens zwei 2-Henkel trifft. Sie bewiesen, dass jede hyperbolische 3-Mannigfaltigkeit vom Volumen 2,848 eine eingebettete Mom-2- oder Mom-3-Untermannigfaltigkeit hat und insbesondere durch Dehn-Chirurgie an einer Mom-2- oder Mom-3-Mannigfaltigkeit entsteht. Weiterhin bewiesen sie, dass es 3 Mom-2- und 18 Mom-3-Mannigfaltigkeiten gibt und klassifizierten diese. Insbesondere folgt aus ihren Arbeiten, dass das Volumen 0,9427… der Weeks-Mannigfaltigkeit das kleinstmögliche Volumen einer hyperbolischen 3-Mannigfaltigkeit ist.

Literatur

  • William P. Thurston: The Geometry and Topology of Three-Manifolds online (Kapitel 5.11, 5.12., 6.6, 7)
  • Sylvain Maillot: Variétés hyperboliques de petit volume (d'après D. Gabai, R. Meyerhoff, P. Milley, …). Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011. Astérisque No. 332 (2010), Exp. No. 1011, x, 405–417. ISBN 978-2-85629-291-4 pdf

Einzelnachweise

  1. Hsien Chung Wang: Topics on totally discontinuous groups. Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 459–487. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972.
  2. Alexander Goncharov: Volumes of hyperbolic manifolds and mixed Tate motives. J. Amer. Math. Soc. 12 (1999), no. 2, 569–618. pdf
  3. Thurston, Theorem 5.11.2
  4. Thurston, Theorem 5.12.1
  5. Michael Gromov: Hyperbolic manifolds (according to Thurston and Jørgensen). Bourbaki Seminar, Vol. 1979/80, pp. 40–53, Lecture Notes in Math., 842, Springer, Berlin-New York, 1981. pdf