Untermannigfaltigkeit des ℝn

Aus testwiki
Zur Navigation springen Zur Suche springen

In der Mathematik sind Untermannigfaltigkeiten des n (auch: Untermannigfaltigkeiten des euklidischen Raums) ein Begriff aus der Analysis und der Differentialgeometrie. Da die Untermannigfaltigkeiten Teilmengen eines euklidischen Raumes sind, erben sie von diesem viele Eigenschaften wie zum Beispiel die Möglichkeit Abstände zu messen. Jedoch kann man jede Untermannigfaltigkeit auch als abstrakte differenzierbare Mannigfaltigkeit (ohne umgebenden Raum) betrachten. Die Äquivalenz der beiden Sichtweisen wird durch den Einbettungssatz von Whitney sichergestellt.

Ausgewählte Beispiele, in denen Untermannigfaltigkeiten des n eine Rolle spielen, sind:

In all diesen Anwendungen wird die Menge der betrachteten Punkte von vornherein auf eine Teilmenge M des n eingeschränkt, die sich lokal durch Diffeomorphismen auf Gebiete eines m mit 0mn abbilden lässt. Diese Teilmenge M wird als m-dimensionale Untermannigfaltigkeit des n bezeichnet. Mit Hilfe der Diffeomorphismen kann man auf der Untermannigfaltigkeit im differentialgeometrischen Sinne genauso rechnen wie in Gebieten des m.

Meistens wird die Menge M durch Nebenbedingungen beschrieben. Das heißt, M enthält gerade diejenigen Punkte x, die mit einer vorgegeben stetig differenzierbaren Funktion f:nnm mit 0<m<n die Gleichung

f(x)=0

erfüllen. Außerdem wird noch gefordert, dass 0 ein regulärer Wert von f ist, also die Jacobi-Matrix Df(x) von f für alle Punkte xM den Maximalrang nm hat.

Die letzte Bedingung sichert die Anwendbarkeit des Satzes über implizite Funktionen. Dieser besagt, dass es zu jedem Punkt x¯M eine n-Umgebung Ux¯ von x¯ gibt, in der die Punkte xUx¯M schon eindeutig durch m Koordinaten parametrisiert sind. Die Abbildung, die xUx¯M auf die zur Parametrisierung benötigten Koordinaten projiziert, ist ein Beispiel für eine Kartenabbildungen und Ux¯M ist das zugehörige Kartengebiet. Da es zu jedem Punkt x¯M eine Kartenabbildung gibt, kann man ganz M mit den zugehörigen Kartengebieten überdecken. Eine Menge solcher Karten, mit deren Kartengebieten man M überdecken kann, ist ein Beispiel für einen Atlas.

Mit Hilfe der Kartenabbildungen kann man auf M lokal wie im m rechnen. Das motiviert, dass die natürliche Zahl m Dimension von M genannt wird und M als m-dimensionale Untermannigfaltigkeit des n bezeichnet wird.

Beispiel

Datei:KartenS1.png
Kartengebiete und Projektionen als Kartenabbildungen für die eindim. Einheitssphäre

Die Einheitssphäre im n wird mit der stetig differenzierbaren Funktion f(x):=x21 durch die Gleichung f(x)=0 beschrieben. Die Jacobi-Matrix Df(x)=2xT hat für xn mit x=1 ihren Maximalrang eins. Also ist

M:={xnx21=0}

eine (n - 1) - dimensionale Untermannigfaltigkeit des n. In jedem Punkt x¯M ist mindestens eine Koordinate x¯k ungleich Null. Für x¯k>0 kann man mit Ux¯k+={xnxk>0} die Menge

MUx¯k+={xnx=1,xk>0}

als Kartengebiet nutzen und für x¯k<0 mit Ux¯k={xnxk<0} die Menge

MUx¯k={xnx=1,xk<0}.

Die Abbildungen

ϕk+:MUx¯k+n1
ϕk:MUx¯kn1

mit

ϕk+(x)=ϕk(x)=(x1,,xk1,xk+1,,xn)

eignen sich dann als Karten für diese Gebiete.

Am einfachsten zu veranschaulichen ist dieses Vorgehen für die eindimensionale Einheitssphäre im 2. Im nebenstehenden Bild sind die vier Kartengebiete als dick durchgezogene Linien eingezeichnet. Die Vereinigung der Kartengebiete überdeckt die gesamte Einheitssphäre, also bilden diese Karten zusammen einen Atlas. Die jeweils zu den Kartengebieten gehörigen Flachmacher sind durch einen kleinen Pfeil angedeutet. Die Bilder der Kartengebiete sind dick gestrichelt.

Für die zweidimensionale Einheitssphäre im 3 benötigt man schon zwei Koordinaten zur eindeutigen Parametrisierung der Punkte in den Kartengebieten. Zum Beispiel wählt man für x¯1>0 die Menge Ux¯:={x3x1>0}, und als Kartenabbildung ϕ(x)=(x2,x3).

Auch das Möbiusband hat lokal Eigenschaften wie ein Gebiet des 2 und soll deshalb auch als zweidimensionale differenzierbare Untermannigfaltigkeit des 3 bezeichnet werden können. Wäre das Möbiusband als Urbild eines regulären Wertes einer stetig differenzierbaren Funktion f:3 darstellbar, so müsste der senkrecht auf M stehende stetige Gradient dieser Funktion überall in eine Richtung zeigen (als z. B. von der Vorderseite wegzeigen). Das geht jedoch nicht, da das Möbiusband keine Vorder- oder Rückseite hat. Deshalb muss die Definition der differenzierbaren Untermannigfaltigkeit des n etwas allgemeiner gefasst werden.

Definition einer Untermannigfaltigkeit des euklidischen Raums

Eine Menge Mn ist eine m-dimensionale k-mal stetig differenzierbare Untermannigfaltigkeit des n, wenn es zu jedem Punkt x¯M eine n-Umgebung Ux¯ und eine k-mal stetig differenzierbare Funktion fx¯:Ux¯nm mit regulärem Wert 0 gibt, so dass fx¯1({0})=MUx¯ gilt.

Wichtige Aussagen

Äquivalent dazu ist: Eine Menge Mn ist genau dann eine k-mal stetig differenzierbare Untermannigfaltigkeit des n, wenn es zu jedem Punkt x¯M einen lokalen Flachmacher gibt, d. h., zu x¯ existieren eine n-Umgebung Ux¯ und ein Ck Diffeomorphismus f:Ux¯f(Ux¯)n so dass für alle xUx¯ gilt: fm+1(x)==fn(x)=0 genau dann, wenn xM.

Eine reguläre Parameterdarstellung ist eine stetig differenzierbare Funktion g, die ein Gebiet Ω des m in den n (n,m,m<n) abbildet und deren Jacobi-Matrix Dg(p) für jeden Parameter pΩ den Maximalrang m hat.

Ist fx¯:Ux¯f(Ux¯) ein lokaler Flachmacher einer Mannigfaltigkeit M, so ist g:=(pr1:mfx¯|(Ux¯M))1 eine reguläre Parameterdarstellung, die zumindest den Teil Ux¯M von M parametrisiert. Dabei projiziert pr1:m:nm mit pr1:m(x)=(x1,,xm) auf die wesentlichen Komponenten des lokalen Flachmachers.

Beispiel für eine Immersion, deren volles Bild keine Untermannigfaltigkeit des n ist

Lokal kann man durch reguläre Parameterdarstellungen auch Mannigfaltigkeiten definieren: Ist g:Ωn eine reguläre Parameterdarstellung und pΩ beliebig, so existiert eine Umgebung UpΩ von p, so dass das Bild g(Up)n von Up unter g eine differenzierbare Untermannigfaltigkeit des n darstellt.

Beispiel

Die rechts veranschaulichte Immersion g:(π/2,3π/2)2 mit g(p):=(2cos(p),sin(2p)) ist ein Beispiel dafür, dass die vorstehende Aussage nicht notwendigerweise auf das volle Bild einer Immersion verallgemeinerbar ist (sogar dann nicht, wenn, wie in diesem Beispiel, die Immersion injektiv ist). Die Menge M:=g((π2,3π2)) ist lokal um den Punkt (0,0) nicht diffeomorph zu einem Intervall der reellen Achse und stellt somit keine eindimensionale Untermannigfaltigkeit des n dar.

Tangentialvektoren/Tangentialraum/Tangentialbündel

Tangentialvektor an M in xM definiert als Geschwindigkeitsvektor einer Kurve γ durch x sowie Tangentialraum an den Punkt x

Sei M eine m-dimensionale differenzierbare Untermannigfaltigkeit des n und xM. Ein Vektor vn heißt Tangentialvektor an M im Punkt x, falls es eine differenzierbare Kurve γ:(ε,ε)M mit γ(0)=x und γ˙(0)=v gibt.

Betrachtet man t(ε,ε)γ(t) als Bahnkurve eines sich auf der Untermannigfaltigkeit M bewegenden Teilchens, so passiert dieses Teilchen zur Zeit t=0 den interessierenden Punkt x gerade mit der Geschwindigkeit v.

Die Menge TxM aller Tangentialvektoren an M im Punkt xM ist ein m-dimensionaler linearer Raum und wird als Tangentialraum an M im Punkt x bezeichnet.

Definitionsgemäß lässt sich die Untermannigfaltigkeit in einer Umgebung Ux¯ des Punktes x¯M als reguläre Nullstelle einer Funktion f:Ux¯nm darstellen. Sei γ:(ε,ε)Ux¯M eine beliebige stetig differenzierbare Kurve mit γ(0)=x¯. Da diese auf der Mannigfaltigkeit verläuft, erfüllt sie die Gleichung f(γ(t))=0. Ableiten nach t an der Stelle t=0 ergibt Df(γ(t))γ˙(t)|t=0=0, woraus folgt:

Der Tangentialraum TxM ergibt sich gerade als Kern der zu f gehörigen Jacobi-Matrix Df(x¯), das heißt, es gilt Tx¯M={vnDf(x¯)v=0}.

Hat man eine (lokale) reguläre Parameterdarstellung g:ΩmM gegeben, die einen Parameterpunkt pΩ in xM abbildet, so lässt sich der Tangentialraum an M in x auch als volles Bild der zugehörigen Jacobi-Matrix Dg(p) darstellen:

TxM={Dg(p)uum}.

Die Relation TM:={(x,v)M×nvTxM}, die jedem Punkt xM alle Tangentialvektoren an M in diesem Punkt zuordnet, heißt Tangentialbündel von M.

Sei M eine mindestens zweimal stetig differenzierbare Untermannigfaltigkeit des n und x¯M beliebig. Aus einer lokalen Darstellung MUx¯={xUx¯f(x)=0} von M in einer Umgebung Ux¯ von x¯ lässt sich eine lokale Darstellung von TM konstruieren:

TM(Ux¯×n)={(x,v)Ux¯×nf(x)=0 und Df(x)v=0}.

Damit ist TM eine 2m-dimensionale (mindestens einmal) stetig differenzierbare Untermannigfaltigkeit des 2n (im Sinne der üblichen Identifikation des n×n mit dem 2n).

Literatur

  • Konrad Königsberger: Analysis 2, Springer-Verlag, Berlin/Heidelberg, 2000, ISBN 3-540-43580-8