Selbstmeidender Pfad

Aus testwiki
Zur Navigation springen Zur Suche springen
Dieser Pfad kehrt nie zu einem bereits besuchten Punkt zurück.
Drei Beispiele auf einem 8x8 Gittergraph

In der mathematischen Theorie der Irrfahrten sind selbstmeidende Pfade Wege auf einem Gitter, die nie zu einem bereits zuvor besuchten Punkt zurückkehren.

Selbstmeidende Pfade sind das einfachste mathematische Modell für die Anordnung langer Polymerketten.

Die Berechnung selbstmeidender Pfade ist ein zentrales Thema der Perkolationstheorie. Es gibt zahlreiche durch empirische Untersuchungen und Heuristiken gestützte Vermutungen über das Verhalten selbstmeidender Pfade. Mathematisch bewiesen ist von diesen Vermutungen aber nur wenig, gerade auch in den für Anwendungen interessanten niedrigen Dimensionen 2d4.

Definition

Quadratgitter 2
Hexagonalgitter

Es sei Λd ein Gitter im d-dimensionalen Raum, zum Beispiel dd oder das Hexagonalgitter in der Ebene.

Ein selbstmeidender Pfad im Gitter Λ ist ein Pfad (Weg), der jeden Gitterpunkt höchstens einmal besucht.

Anzahl selbstmeidender Pfade

Zu einem gegebenen Gitter Λ sei cn die Anzahl selbstmeidender Pfade der Länge n. Die Folge cn ist subadditiv und demzufolge existiert der Grenzwert

μ=limncn1n.

Er wird als die Zusammenhangskonstante (englisch: connective constant) des Gitters bezeichnet.

Das einzige Gitter, für das die Zusammenhangskonstante explizit bekannt ist, ist das Hexagonalgitter. Für dieses haben Duminil-Copin und Smirnow bewiesen, dass

μ=2cos(π8)=2+2

ist.[1]

Für das Gitter dd gilt die Ungleichung

dμ2d1.

Für d=2, also für das Quadratgitter 2, kann man numerisch μ=2,63815853 berechnen.

Numerische Experimente stützen die Vermutung, dass für alle Gitter asymptotisch cnn1132μn gilt, was bedeuten würde, dass im Gegensatz zum exponentiellen Faktor μn der subexponentielle Faktor n1132 für alle Gitter derselbe wäre.

Siehe auch

Literatur

  • N. Madras, G. Slade: The Self-Avoiding Walk. Birkhäuser, 1996, ISBN 0-8176-3891-1.
  • G. F. Lawler: Intersections of Random Walks. Birkhäuser, 1991, ISBN 0-8176-3892-X.
  • N. Madras, A. D. Sokal: The pivot algorithm – A highly efficient Monte-Carlo method for the self-avoiding walk. In: Journal of Statistical Physics. Band 50, 1988, S. 109–186. doi:10.1007/bf01022990.
  • M. E. Fisher: Shape of a self-avoiding walk or polymer chain. In: Journal of Chemical Physics. Band 44, Nr. 2, 1966, S. 616. Vorlage:Bibcode. doi:10.1063/1.1726734.

Einzelnachweise

  1. Hugo Duminil-Copin, Stanislav Smirnov: The connective constant of the honeycomb lattice equals 2+2. In: Ann. of Math. Band 175, Nr. 3, 2012, S. 1653–1665.