Satz von Myers-Steenrod

Aus testwiki
Zur Navigation springen Zur Suche springen

Vorlage:Dieser Artikel Der Satz von Myers-Steenrod ist ein Lehrsatz aus dem mathematischen Gebiet der Differentialgeometrie.

Er besagt, dass die Isometriegruppe jeder vollständigen Riemannschen Mannigfaltigkeit eine Lie-Gruppe ist. Ihre Dimension ist höchstens 12dim(M)(dim(M)+1).

Der Satz stammt von Norman Steenrod und Sumner Byron Myers.

Beispiele

Die Isometriegruppe der Einheitssphäre Sn ist die orthogonale Gruppe O(n+1).

Die Isometriegruppe der hyperbolischen Ebene ist die projektive lineare Gruppe PGL(2,). Die Isometriegruppe des 3-dimensionalen hyperbolischen Raumes ist PGL(2,).

Beweisidee

In einer zusammenhängenden Riemannschen Mannigfaltigkeit M wähle einen Punkt x und seine Exponentialabbildung expx:TxMM. Die Bilder der 1-dimensionalen Unterräume in TxM unter der Exponentialabbildung sind genau die Geodäten durch x. Aus der Vollständigkeit von M folgt mit dem Satz von Hopf-Rinow, dass jeder Punkt in M auf einer solchen Geodäten durch x liegt.

Wähle nun n=dim(M) linear unabhängige Vektoren in TxM und bezeichne mit p1,,pn ihre Bildpunkte unter expx. Eine Isometrie bildet Geodäten in Geodäten ab und aus dem oben gesagten folgt, dass eine Isometrie durch die Bilder von x,p1,,pn bereits eindeutig festgelegt ist.

Wir erhalten also eine Einbettung der Isometriegruppe Isom(M) in das Produkt von n+1 Kopien der Mannigfaltigkeit M. Man kann zeigen, dass das Bild dieser Einbettung eine differenzierbare Untermannigfaltigkeit und die Gruppenoperationen in dieser Mannigfaltigkeitsstruktur differenzierbar sind. Damit wird Isom(M) eine Lie-Gruppe.

Verallgemeinerung

Allgemeiner ist die Isometriegruppe eines RCD*(K,n)-Raumes stets eine Lie-Gruppe.[1][2] RCD*(K,n)-Räume sind eine Klasse metrischer Maßräume, die alle Riemannschen Mannigfaltigkeiten der Dimension n mit Ricci-Krümmung RicK enthält und unter Gromov-Hausdorff-Konvergenz metrischer Maßräume abgeschlossen ist.

Literatur

  • S. B. Myers, N. E. Steenrod: The group of isometries of a Riemannian manifold. Ann. of Math. (2) 40 (1939), no. 2, 400–416.

Einzelnachweise

  1. L. Guijarro, J. Santos-Rodríguez: On the isometry groups of RCD*(K,N)-spaces, manuscripta mathematica 158, 441–461 (2018)
  2. G. Sosa: The isometry group of an RCD*-space is Lie, Potential Analysis 49, 267–286 (2018)