Peetre-Ungleichung

Aus testwiki
Zur Navigation springen Zur Suche springen

Die Peetre-Ungleichung, benannt nach Jaak Peetre, ist eine Ungleichung aus dem mathematischen Teilgebiet der Funktionalanalysis, genauer aus der Theorie der Hilberträume.

Es sei H ein Hilbertraum. Dann gilt für alle x,yH und für alle reellen Zahlen t die Ungleichung[1]

(1+x2)t(1+y2)t2|t|(1+xy2)|t|.

Diese Ungleichung wurde 1959 von J. Peetre bewiesen[2] und wird für numerische und theoretische Abschätzungen eingesetzt. Stellt man obige Ungleichung zu

(1+x2)t2|t|(1+xy2)|t|(1+y2)t

um, so erkennt man, dass diese Abschätzung in Sobolev-Räumen reellwertiger Ordnung hilfreich sein kann, denn dort treten unter einem Integral gerade Funktionen der Form (1+x2)t auf. Eine Anwendung der Peetre-Ungleichung in dieser Richtung findet sich im unten angegebenen Lehrbuch[3] bei der Untersuchung von Multiplikationsoperatoren auf Sobolev-Räumen.

Einzelnachweise

  1. J. Heine: Topologie und Funktionalanalysis, Oldenbourg Verlag (2002), ISBN 3-486-24914-2, Satz 1.1-10
  2. J. Peetre: Une charactérisation abstraite des opérateurs differentiels, Math Scandinavica, Band 7 (1959), Seiten 211–118 (J. Peetre: Rectification à l'article "Une charactérisation abstraite des opérateurs differentiels", Math Scandinavica, Band 8 (1960), Seiten 116–120)
  3. Herbert Schröder: Funktionalanalysis, Harri Deutsch Verlag (2000), ISBN 3-8171-1623-3, Satz 6.1.7