Kuboformel

Aus testwiki
Zur Navigation springen Zur Suche springen

Vorlage:QS-Physik Die Kuboformel (nach Ryōgo Kubo)[1][2] ist ein Resultat der Quantenstatistik. Sie gibt die Lineare Antwortfunktion einer messbaren Größe (Observable) in zeitabhängiger Störungstheorie bei endlicher Temperatur als thermischen Erwartungswert hermitescher Operatoren im Wechselwirkungsbild an.

Zu den zahlreichen Anwendungen der Kubo-Formel gehört die Berechnung magnetischer und elektrischer Suszeptibilitäten und abstrakter Verallgemeinerungen davon als Folge einer zeitabhängigen Störung des Hamiltonoperators des Systems.

Details

Die Kuboformel führt auf eine Beziehung zwischen

  • dem quantenstatistischen Erwartungswert A0 einer Observable A in einem ungestörten System mit Hamilton-Operator H0 zu einer Zeit t0 und
  • dem Erwartungswert A(t) derselben Observable nach Einführung einer kleinen Störung des Systems in Form eines Störoperators V(t) zu einer Zeit t:
A(t)A0=it0tdt[A(t),V(t)]

Dabei bezeichnen

Herleitung und Formulierung

Ein Quantensystem habe den zeitunabhängigen Hamiltonoperator H^0 mit den als diskret angenommenen Energiewerten En. Der quantenmechanische und thermische Erwartungswert einer physikalischen Größe mit dem hermiteschen Operator A^ ist dann:

A^=1Z0Tr[ρ^0A^]=1Z0nn|A^|neβEn
ρ^0=eβH^0=n|nn|eβEn

wobei Z0=Tr[ρ0] die Zustandssumme und β die reziproke absolute Temperatur 1/(kBT) mit der Boltzmann-Konstanten kB und der Temperatur T ist. Im letzten Gleichheitszeichen wurde dabei nach den ungestörten Energieeigenzuständen |n mit H^0|n=En|n entwickelt und deren Vollständigkeit ausgenutzt.

Wenn zur Zeit t=t0 eine externe Störung eingeschaltet wird, verlässt das System das thermische Gleichgewicht. Die Störung wird durch einen zeitabhängigen Zusatz zum Hamiltonoperator beschrieben:

H^(t)=H^0+V^(t)Θ(tt0),

Dabei bezeichnet Θ(t) die Heaviside-Funktion, die für nichtnegative Werte von tt0 den Wert Eins annimmt und für alle anderen tt0 den Wert Null. Damit wird dem instantanen „Einschaltprozess“ zum Zeitpunkt t0 Rechnung getragen. V^(t) ist ein für alle t definierter hermitescher Operator, sodass H^(t) für alle t ein vollständiges Orthonormalsystem von Eigenfunktionen |n(t) und Eigenwerten En(t) besitzt.

Aus der Zeitentwicklung der Dichtematrix ρ^(t)

ρ^(t)=n|n(t)n(t)|eβEn(t)

folgt unter der Annahme, dass zu jedem Zeitpunkt der quantenstatistische Gleichgewichtsformalismus gültig bleibt[3] , der thermische Erwartungswert der Operatoren A^:

A^=1Z(t)Tr[ρ^(t)A^]=1Z(t)nn(t)|A^|n(t)eβEn(t),

mit der Zustandssumme Z(t)=Tr[ρ^(t)].

Hier wird noch das quantenmechanische Schrödingerbild benutzt, allerdings mit zeitabhängigen Hamiltonoperatoren. Es wird aber an dieser Stelle darauf hingewiesen, dass sich im Allgemeinen sowohl die Eigenfunktionen |n(t) als auch die Eigenwerte En(t) des Hamiltonoperators mit t ändern werden. Die Zeitabhängigkeit der |n(t) folgt aus der Schrödingergleichung it|n(t)=H^(t)|n(t). Da V^(t) „schwach“ sein soll, liegt es nahe, die niedrigste Ordnung der zeitabhängigen Störungstheorie zu benutzen und zum Wechselwirkungsbild überzugehen (Zustände |n|n^). Das Ergebnis ist:

|n(t)=:eiH^0t0|n^(t)=eiH^0tU^(t,t0)|n^(t0), wobei per Definition |n^(t0)=e+iH^0t0|n(t0) ist.

In linearer Ordnung in V^(t) gilt:

U^(t,t0)=1it0tdtV^(t).

Auf diese Weise erhält man für A^(t) in linearer Ordnung das Endresultat (in dieser Ordnung sind ferner alle oben angesprochenen Probleme beseitigt, weil bei Störungsrechnungen erster Ordnung nur die Eigenfunktionen nullter Ordnung benötigt werden):

A^(t)T=A^0,Tit0tdt1Z0 neβEnn(t0)|A^(t)V^(t)V^(t)A^(t)|n(t0)=A^0,Tit0tdt[A^(t),V^(t)]0,T

Hier bedeutet der Ausdruck 0,T einen mit dem Hamiltonoperator H^0 berechneten quantenstatistischen Erwartungswert, bei der Temperatur T, während die Ausdrücke darüber, n(t0)||n(t0), gewöhnliche quantenmechanische Erwartungswerte sind, welche die Temperatur nicht berücksichtigen. Ferner sind in eβEn mit En die Eigenwerte von H^(t0) gemeint.

Da zum Zeitpunkt t0 die verschiedenen Bilder identisch sind, gilt dasselbe auch für obiges Endresultat.

Hier wurden bosonische Zustände betrachtet. Für fermionische Zustände ergeben sich zusätzliche Besonderheiten.[4] Das reduzierte Plancksche Wirkungsquantum wurde Eins gesetzt.

Einzelnachweise und Fußnoten

  1. Vorlage:Cite journal
  2. Vorlage:Cite journal
  3. Im allgemeinsten Fall der Quantenstatistik kann ρ^(t)=eβH^(t) durch einen beliebigen hermiteschen Operator ersetzt werden, dessen Eigenwerte wn die beiden Bedingungen wn=1 und wn2<1 erfüllen.
  4. Vorlage:Cite book