Kreis des Apollonios

Aus testwiki
Zur Navigation springen Zur Suche springen

In der Geometrie ist der Kreis des Apollonios (auch Kreis des Apollonius oder apollonischer Kreis) ein spezieller geometrischer Ort, nämlich die Menge aller Punkte, für die das Verhältnis der Entfernungen zu zwei vorgegebenen Punkten einen vorgegebenen Wert hat. Der Kreis des Apollonios ist nicht zu verwechseln mit dem apollonischen Problem, einem Berührkreis-Problem. Namensgeber ist in beiden Fällen Apollonios von Perge.

Satz und Definition

Kreis des Apollonios mit TiTa als Durchmesser
  • Gegeben seien eine Strecke [AB] und eine positive reelle Zahl λ1. Dann ist die Punktmenge
    kA={XXA:XB=λ}
    ein Kreis, der als Kreis des Apollonios bezeichnet wird.[1][2]

Zur Begründung der Kreiseigenschaft verwendet man den inneren und den äußeren Teilungspunkt der Strecke [AB] im Verhältnis λ. Diese beiden Punkte (Ti und Ta) erfüllen die oben geforderte Bedingung und teilen die Strecke [AB] harmonisch. Ist nun X ein beliebiger Punkt mit der Eigenschaft XA:XB=λ, so teilt die Winkelhalbierende von Winkel AXB die gegebene Strecke [AB] im Verhältnis der anliegenden Dreiecksseiten (Winkelhalbierendensatz), also im Verhältnis XA:XB=λ. Daher ist Ti der Schnittpunkt dieser Winkelhalbierenden mit AB. Anders ausgedrückt: XTi ist Winkelhalbierende von AXB. Entsprechend lässt sich zeigen, dass die Gerade XTa den Nebenwinkel von AXB halbiert. Da die Winkelhalbierenden von Nebenwinkeln zueinander senkrecht stehen, muss X auf dem Thaleskreis über [TiTa] liegen.

Umgekehrt erfüllt jeder Punkt X des genannten Thaleskreises die Bedingung XA:XB=λ.

Im speziellen Fall λ=1 ist die gesuchte Punktmenge die Mittelsenkrechte der Punkte A und B, das heißt der Apollonische Kreis entartet zu einer Geraden beziehungsweise besitzt einen unendlich großen Radius.

Weitere Eigenschaften

Apollonios-Kreise (blau) zu einer Strecke und zu ihnen orthogonale auf sich selbst invertierende Kreise durch die Endpunkte der Strecke (rot)
Die drei Apollonios-Kreise eines Dreiecks
  • Der Radius des Apollonios-Kreises beträgt rA=λ|λ21|AB.
  • Der durch Ti gehende Apollonioskreis für die Strecke [AB] ist der durch Ti gehende Inversionskreis, bezogen auf den die Endpunkte A,B zueinander invers sind.
  • Wegen der Reziprozität der harmonischen Teilung – teilt ein Punktpaar ein anderes harmonisch, so ist es selbst von diesem harmonisch geteilt (im Verhältnis λ+1λ1 statt λ ) – ist der Kreis über [AB] Apollonioskreis für die Strecke [TiTa].
  • Weil A und B bei Inversion am Apollonioskreis ineinander übergehen, wird jeder durch A und B gehende Kreis (rot im Bild) in sich selbst invertiert und schneidet den Apollonioskreis (blau) deshalb rechtwinklig, d. h. ihre Tangenten im Schnittpunkt stehen senkrecht aufeinander. Dies gilt insbesondere auch für den über [AB] geschlagenen Kreis und außerdem für alle Apollonioskreise mit A und B als Fixpunkten.
  • Die drei Kreise des Apollonios (blau) eines Dreiecks (grau) schneiden sich im isodynamischen Punkt des entsprechenden Dreiecks. Ihre Mittelpunkte liegen auf einer Geraden (grün) und sie schneiden den Umkreis (rot) des Dreiecks senkrecht.[3]

Literatur

  • Franz Lemmermeyer: Mathematik à la Carte: Quadratische Gleichungen mit Schnitten von Kegeln. Springer, 2016, ISBN 9783662503416, S. 98
  • Joachim Engel, Andreas Fest: Komplexe Zahlen und ebene Geometrie. Walter de Gruyter, 2016, ISBN 9783110406887, S. 40
  • Nathan Altshiller: On the Circles of Apollonius. The American Mathematical Monthly, Band 22, Nr. 8 (Okt., 1915), S. 261–263 (Vorlage:JSTOR)

Vorlage:Commonscat

Einzelnachweise

  1. Vorlage:Literatur
  2. Joachim Engel, Andreas Fest: Komplexe Zahlen und ebene Geometrie. Walter de Gruyter, 2016, ISBN 9783110406887, S. 40
  3. Vorlage:Literatur