Frobenius-Reziprozität

Aus testwiki
Zur Navigation springen Zur Suche springen

Frobenius-Reziprozität ist ein Begriff aus dem mathematischen Gebiet der Darstellungstheorie. Er setzt induzierte Darstellungen und die Einschränkung von Darstellungen miteinander in Beziehung.

Die Frobenius-Reziprozität sagt uns einerseits, dass die Abbildungen Res und Ind adjungiert zueinander sind. Betrachten wir andererseits mit W eine irreduzible Darstellung von H und sei V eine irreduzible Darstellung von G, dann erhalten wir mit der Frobenius-Reziprozität außerdem, dass W so oft in Res(V) enthalten ist wie Ind(W) in V.

Sie ist nach Ferdinand Georg Frobenius benannt.

Notation

Mit Hilfe der Einschränkung (engl.: restriction) kann man aus einer Darstellung ϕ einer Gruppe G eine Darstellung Res(ϕ) einer Untergruppe H erhalten. Umgekehrt kann man aus einer gegebenen Darstellung ψ einer Untergruppe H die sogenannte induzierte Darstellung Ind(ψ) der ganzen Gruppe G erhalten.

Für Darstellungen und ihre Charaktere wie auch allgemeiner für Klassenfunktionen ist ein Skalarprodukt definiert. Die allgemeine Form der Frobeniusreziprozität verwendet das Skalarprodukt von Klassenfunktionen.

Frobenius-Reziprozität

Sei G eine endliche Gruppe und HG eine Untergruppe. Seien ψclass(H) φclass(G) Klassenfunktionen, dann gilt

ψ,ResφH=Indψ,φG

Die Aussage gilt insbesondere für das Skalarprodukt von Charakteren von Darstellungen.

Beweis

Da sich jede Klassenfunktion als Linearkombination irreduzibler Charaktere schreiben lässt, und , eine Bilinearform ist, können wir ohne Einschränkung ψ bzw. φ als Charakter einer irreduziblen Darstellung von H in W bzw. von G in V annehmen. Wir setzen ψ(s)=0 für sGH.
Dann gilt:

Ind(ψ),φG=1|G|tGInd(ψ)(t)φ(t1)=1|G|tG1|H|sGs1tsHψ(s1ts)φ(t1)=1|G|1|H|tGsGψ(s1ts)φ((s1ts)1)=1|G|1|H|tGsGψ(t)φ(t1)=1|H|tGψ(t)φ(t1)=1|H|tHψ(t)φ(t1)=1|H|tHψ(t)Res(φ)(t1)=ψ,Res(φ)H

Dabei haben wir nur die Definition der Induktion auf Klassenfunktionen eingesetzt und die Eigenschaften der Charaktere ausgenutzt.

Alternativer Beweis

In der alternativen Beschreibung der induzierten Darstellung über die Gruppenalgebra, ist die Frobeniusreziprozität ein Spezialfall der Gleichung für den Wechsel zwischen Ringen:

Hom[H](W,U)=Hom[G]([G][H]W,U).

Diese Gleichung ist per definitionem äquivalent zu

W,Res(U)H=W,UH=Ind(W),UG.

Und da diese Bilinearform mit der Bilinearform auf den dazugehörigen Charakteren übereinstimmt, folgt der Satz ganz ohne Nachrechnen.

Frobenius-Reziprozität für kompakte Gruppen

Die Frobenius-Reziprozität überträgt sich mit der modifizierten Definition des Skalarproduktes und der Bilinearform auf kompakte Gruppen, wobei der Satz anstatt für Klassenfunktionen hier für quadratisch integrierbare Funktionen auf G gilt und die Untergruppe H abgeschlossen sein muss.