Auslander-Reiten-Köcher

Aus testwiki
Zur Navigation springen Zur Suche springen

Der Auslander-Reiten-Köcher – benannt nach Maurice Auslander (1926–1994) und Idun Reiten (* 1942) – ist ein Translationsköcher, der zur kombinatorischen Beschreibung von abelschen Kategorien benutzt wird. Eingeführt wurde er ursprünglich, um die Kategorie der Darstellungen eines Köchers oder – allgemeiner – von Moduln über Artin-Algebren zu beschreiben.

Definition für die Kategorie der Darstellungen eines Köchers

Sei k ein Körper und Q ein azyklischer Köcher. Sei C die Kategorie der Darstellungen des Köchers über dem Körper k. Dann sind die Punkte des Auslander-Reiten-Köchers ΓC die Isomorphieklassen der unzerlegbaren Darstellungen in C. Zwischen zwei Punkten x und y sind die Pfeile wie folgt definiert: Aus x wähle einen Repräsentanten X und aus y einen Repräsentanten Y. Die Pfeile von X nach Y bilden eine Basis des Raumes der irreduziblen Abbildungen von X nach Y. Die Translation τ ist eine Abbildung einer Teilmenge der Punkte in ΓC in die Menge der Punkte ΓC. Für jeden Punkt z, dessen Elemente nicht projektiv sind, gibt es eine Auslander-Reiten-Folge (fast zerfallende, kurze exakte Folge) der Form 0XYZ0 mit Zz. Dann ist τ(z)=x.

Entsprechend gibt es auch für jeden Punkt x, dessen Elemente nicht injektiv sind, eine Auslander-Reiten-Folge der Form 0XYZ0 mit Xx.

Erläuterungen

Der Auslander-Reiten-Köcher liefert auf Grund des Satzes von Krull-Remak-Schmidt (jede nicht-triviale Darstellung eines Köchers ist die direkte Summe von unzerlegbaren Darstellungen) eine Beschreibung der Objekte in der Kategorie C.

Falls C darstellungsendlich ist, lässt sich jede nicht-triviale Abbildung als Komposition endlich vieler irreduzibler Abbildungen zerlegen. Daher liefert in diesem Fall der Auslander-Reiten-Köcher auch eine Beschreibung der Morphismen.

Literatur

  • M. Auslander, I. Reiten: Representation theory of artin algebras III. Almost split sequences, Comm. Algebra 3 (1975), 239–294
  • M. Auslander, I. Reiten, S. O. Smalø: Representation theory of artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press (1994)
  • Karsten Schmidt: Auslander-Reiten theory for simply connected differential graded algebras. Dissertation, Universität Paderborn 2007