Formelsammlung Stochastik

Aus testwiki
Version vom 26. Februar 2024, 19:34 Uhr von imported>Dexxor (unten wird ausschließlich \varphi benutzt)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Dies ist eine Formelsammlung zu dem mathematischen Teilgebiet Stochastik einschließlich Wahrscheinlichkeitsrechnung, Kombinatorik, Zufallsvariablen und Verteilungen sowie Statistik.

Notation

In der Stochastik gibt es neben der üblichen mathematischen Notation und den mathematischen Symbolen folgende häufig verwendete Konventionen:

Im Folgenden sei stets ein Wahrscheinlichkeitsraum (Ω,Σ,P) gegeben. Darin ist der Ergebnisraum Ω eine beliebige nichtleere Menge, Σ eine σ-Algebra von Teilmengen von Ω, die Ω enthält, und P ein Wahrscheinlichkeitsmaß auf Ω.

Grundlagen

Axiome: Jedem Ereignis AΣ wird eine Wahrscheinlichkeit P(A) zugeordnet, so dass gilt:

0P(A)1,
P(Ω)=1,
für paarweise disjunkte Ereignisse A1,A2, gilt P(A1A2)=P(A1)+P(A2)+

Rechenregeln: Aus den Axiomen ergibt sich:

P()=0
Für AB gilt P(BA)=P(B)P(A), insbesondere P(A)P(B)
Für das Gegenereignis A=ΩA gilt P(A)=1P(A)
P(AB)=P(A)+P(B)P(AB)

Laplace-Experimente

P(A)=|A||Ω|=Anzahl der günstigen ErgebnisseAnzahl der möglichen Ergebnisse

Bedingte Wahrscheinlichkeit

P(A|B)=PB(A)=P(AB)P(B)

Satz von Bayes:

P(B|A)=P(B)P(A|B)P(B)P(A|B)+P(B)P(A|B)

Unabhängigkeit:

Zwei Ereignisse A,B sind unabhängig P(AB)=P(A)P(B)

Fakultät: Anzahl der Möglichkeiten beim Ziehen aller n Kugeln aus einer Urne (ohne Zurücklegen):

n!=n(n1)(n2)321=n(n1)!

wobei 0!=1!=1

  ohne Wiederholung
(von n Elementen)
 
(a,b,c)
mit Wiederholung
(von r + s + … + t = n Elementen,
von denen jeweils r, st nicht unterscheidbar sind)
(a,a,b)
Permutation
(a,b)(b,a)
n! (r+s++t)!r!s!t!=n!r!s!t!

Binomialkoeffizientn über k

(nk)=n!k!(nk)!

Anzahl der Möglichkeiten beim Ziehen von k Kugeln aus einer Urne mit n Kugeln:

  ohne Wiederholung
(ohne Zurücklegen)
(siehe Hypergeometrische Verteilung)
(a,b,c)
{a,b,c}
mit Wiederholung
(mit Zurücklegen)
(siehe Binomialverteilung)
(a,a,b)
{a,a,b}
Variation
(a,b)(b,a)
(nk)k!=n!(nk)! nk
Kombination
{a,b}={b,a}
(nk)=n!(nk)!k! ((nk))=(n+k1k)=(n+k1)!(n1)!k!

Diskrete Zufallsgrößen

Eine Funktion f heißt Wahrscheinlichkeitsfunktion einer diskreten Zufallsvariablen X, wenn folgende Eigenschaften erfüllt sind:

  1. Für alle x gilt f(x)0
  2. xf(x)=1

Für die zugehörige Zufallsvariable gilt dann:

P(X=x)=f(x)

Eine Zufallsgröße X und deren Verteilung heißen diskret, falls die Funktion f(x)=P(X=x) die Eigenschaft (2) hat. Man nennt f(x) die Wahrscheinlichkeitsfunktion von X.

E(X)=μ=xxf(x)
E(g(X))=xg(x)f(x)
V(X)=σ2=x(xμ)2f(x)

Stetige Zufallsgrößen

Eine Funktion f heißt Dichte(-Funktion) einer stetigen Zufallsvariablen X, wenn folgende Eigenschaften erfüllt sind:

  1. Für alle x gilt f(x)0
  2. +f(x)dx=1

Für eine stetige Zufallsgröße gilt dann:

P(aXb)=abf(x)dx

Eine Zufallsgröße X und deren Verteilung heißen stetig, falls es eine geeignete Dichtefunktion f mit dieser Eigenschaft gibt. Die Funktion f heißt Dichte(Funktion) von X.

Für die Wahrscheinlichkeit gilt

P(X=a)=0 für alle a
P(aXb)=P(a<Xb)=P(aX<b)=P(a<X<b)

Erwartungswert und Varianz sind gegeben durch

E(X)=μ=+xf(x)dx
E(g(X))=+g(x)f(x)dx
V(X)=σ2=+(xμ)2f(x)dx

Erwartungswert, Varianz, Kovarianz, Korrelation

Für den Erwartungswert E(X), die Varianz V(X), die Kovarianz Cov(X,Y) und die Korrelation ϱ(X,Y) gelten:

E(aX+b)=aE(X)+b
E(X+Y)=E(X)+E(Y), allgemein E(i=1nXi)=i=1nE(Xi)
Für unabhängige Zufallsvariablen Xi gilt: E(i=1nXi)=i=1nE(Xi)
V(X)=E((XE(X))2)=E(X2)E(X)2
V(aX+b)=a2V(X)
Für unabhängige Zufallsvariablen Xi gilt: V(i=1nXi)=i=1nV(Xi)
Cov(X,Y)=E((XE(X))(YE(Y)))=E(XY)E(X)E(Y)
Cov(X,Y)=Cov(Y,X)
Cov(X,X)=V(X)
Cov(aX+b,Y)=aCov(X,Y)
Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
V(X+Y)=V(X)+V(Y)+2Cov(X,Y)
ϱ(X,Y)=Cov(X,Y)V(X)V(Y)

Tschebyschow-Ungleichung:

P(|XE(X)|α)V(x)α2

Gegeben ist ein n-stufiger Bernoulli-Versuch (d. h. n mal dasselbe Experiment, unabhängig voneinander, mit nur zwei möglichen Ausgängen und konstanten Wahrscheinlichkeiten) mit der Erfolgswahrscheinlichkeit p und der Misserfolgswahrscheinlichkeit q=1p. Die Wahrscheinlichkeitsverteilung der Zufallsgröße X: Anzahl der Erfolge heißt Binomialverteilung.

Die Wahrscheinlichkeit für k Erfolge berechnet sich nach der Formel:

P(X=k)=(nk)pkqnk

Erwartungswert:

μ=E(X)=np

Varianz:

σ2=V(X)=npq

Standardabweichung:

σ=σ(X)=V(X)=npq

σ-Regeln

(Wahrscheinlichkeiten von Umgebungen des Erwartungswertes bei Binomialverteilungen) Zwischen dem Radius einer Umgebung um den Erwartungswert und der zugehörigen Wahrscheinlichkeit der Umgebung gelten folgende Zuordnungen (falls σ>3):

Radius der Umgebung Wahrscheinlichkeit der Umgebung
0,68
0,955
0,997
Wahrscheinlichkeit der Umgebung Radius der Umgebung
0,90 1,64σ
0,95 1,96σ
0,99 2,58σ

Standardisieren einer Verteilung

Hat die Zufallsvariable X eine Verteilung mit Erwartungswert E(X)=μ und Standardabweichung σ, dann wird die standardisierte Variable X* definiert durch

X*=Xμσ.

Die standardisierte Variable X* hat den Erwartungswert 0 und die Standardabweichung 1.

Poisson-Näherung

Gegeben sei eine Binomialverteilung mit großem Stichprobenumfang n ≥ 100 und kleiner Erfolgswahrscheinlichkeit p0,1. Mithilfe von μ=np kann man dann näherungsweise die Wahrscheinlichkeit für k Erfolge berechnen:

P(X=0)eμ
P(X=k)μkP(X=k1)

Die Beziehungen lassen sich zusammenfassen zu:

P(X=k)μkk!eμ

Poisson-Verteilung

Gilt für die Verteilung einer Zufallsgröße X

P(X=k)=μkk!eμ

Näherungsformeln von Moivre und Laplace

Sei X eine binomialverteilte Zufallsgröße mit σ>4 (brauchbare Näherung besser σ>9). Die Wahrscheinlichkeit für genau und höchstens k Erfolge lässt sich näherungsweise berechnen durch:

P(X=k)1σφ(kμσ)
P(Xk)=FX(k)φ(kμσ)

Standardnormalverteilung

Die Dichte(Funktion) φ (auch als Glockenkurve bekannt) der Standardnormalverteilung ist definiert durch:

φ(x)=12πe12x2

und die Verteilungsfunktion Φ durch:

Φ(z)=zφ(x)dx

Näherungsformeln für eine diskrete Verteilung unter Anwendung der Kontinuitätkorrektur:

P(X=k)Φ(k+0,5μσ)Φ(k0,5μσ)
P(Xk)Φ(k+0,5μσ)
P(aXb)Φ(b+0,5μσ)Φ(a0,5μσ)

In einer Grundgesamtheit vom Umfang N seien zwei Merkmalsausprägungen vom Umfang K bzw. NK vertreten. Eine Stichprobe vom Umfang n werde genommen. Dann nennt man die Verteilung der Zufallsgröße X: Anzahl der Exemplare der 1. Merkmalsausprägung in der Stichprobe einer hypergeometrischen Verteilung.

Die Wahrscheinlichkeit, dass in der Stichprobe vom Umfang n genau k Exemplare der 1. Merkmalsausprägung sind, ist:

P(X=k)=(Kk)(NKnk)(Nn)

N = Anzahl der Elemente, K = Anzahl der positiven Elemente, n = Anzahl der Ziehungen, k = Anzahl der Erfolge.

Sei p=KN der Anteil, mit dem die 1. Merkmalsausprägung in der Gesamtheit vorkommt, dann gilt:

μ=E(X)=np=nKN
σ2=V(X)=np(1p)NnN1=nKN(1KN)NnN1

Gegeben ist ein Bernoulli-Versuch mit Erfolgswahrscheinlichkeit p. Die Verteilung der Zufallsgröße W: Anzahl der Stufen bis zum ersten Erfolg heißt geometrische Verteilung. Es gilt:

P(W=k)=pqk1 (Erfolg genau beim k-ten Versuch)
P(W>k)=qk (k Misserfolge hintereinander bzw. der erste Erfolg kommt erst nach dem k-ten Versuch)
P(Wk)=1qk (Erfolg spätestens beim k-ten Versuch bzw. bis zum k-ten Versuch tritt mindestens ein Erfolg ein)

Der Erwartungswert ist

E(W)=1p

Weitere

Die unzähligen weiteren speziellen Verteilungen können hier nicht alle aufgeführt werden, es sei auf die Liste univariater Wahrscheinlichkeitsverteilungen verwiesen.

Approximationen von Verteilungen

Unter gewissen Approximationsbedingungen können Verteilungen auch durcheinander approximiert werden um Berechnungen zu vereinfachen. Je nach Lehrbuch können die Approximationsbedingungen etwas unterschiedlich sein.

Nach
Von B(n,p) Po(λ) N(μ,σ)
Diskrete Verteilungen
Binomialverteilung
B(n,p)
-- n>10,p<0,05,
λ:=np
np(1p)9,
μ:=np,σ2:=np(1p)
Hypergeometrische Verteilung
Hyp(N,M,n)
nN<0,05
p:=MN
n>10, MN<0,05,
λ:=nMN
nMN(1MN)9
μ:=nMN,σ2:=nMN(1MN)NnN1
Poisson-Verteilung
Po(λ)
-- λ>9,
μ:=λ,σ2:=λ
Stetige Verteilungen
Chi-Quadrat-Verteilung
χn2
n>30
μ:=n,σ2:=2n
Studentsche t-Verteilung
tn
n>30
μ:=0,σ2:=1
Normalverteilung
N(μ,σ)
--

Bei dem Übergang von einer diskreten Verteilung zu einer stetigen Verteilung kommt auch noch eine Stetigkeitskorrektur (wenn σ29 oder n60) in Betracht P(aXdiskretb)P(a0,5Xstetigb+0,5) und insbesondere P(Xdiskret=a)P(a0,5Xstetiga+0,5).[1]

Kritische Werte

Das α-Level ist der Wert einer Wahrscheinlichkeitsverteilung für den gilt: F(xα)=α. Es gibt eine Standardnotation für einige häufig verwendete Verteilungen:

Lagemaße

Arithmetisches Mittel: x¯=1ni=1nxi=x1+x2++xnn

Median

Modus

Streuungsmaße

empirische Varianz: s2=1ni=1n(xix¯)2=1n(i=1nxi2)x¯2

empirische Standardabweichung: s=s2=1ni=1n(xix¯)2

Zusammenhangsmaße

Empirische Kovarianz:

sxy=1ni=1n(xix¯)(yiy¯)=1n(i=1nxiyi)x¯y¯,

Empirischer Korrelationskoeffizient:

rxy=sxysxsy=(xix¯)(yiy¯)(xix¯)2(yiy¯)2

Gleichung der Regressionsgeraden einer linearen Einfachregression: y=ax+b mit

a=sxysx2=(xix¯)(yiy¯)(xix¯)2
b=y¯ax¯,

wobei x¯ und y¯ die arithmetischen Mittel bedeuten.

Mittelwerte

Mittelwert Zwei Zahlen Allgemein
Modus Ausprägung mit höchster Häufigkeit
Median (Zentralwert) Sofern x1,,xn sortiert sind:

x¯med={x(n+12),n ungerade,12(x(n2)+x(n2+1)),n gerade.

Arithmetisches Mittel a+b2 x¯arithm=1ni=1nxi=x1+x2++xnn
Geometrisches Mittel ab x¯geom=i=1nxin=x1x2xnn
Harmonisches Mittel 21a+1b x¯harm=ni=1n1xi=n1x1+1x2++1xn
Quadratisches Mittel a2+b22 x¯quadr=1ni=1nxi2=x12+x22++xn2n

Parameter

Im Allgemeinen werden in der Statistik unbekannte Parameter der Grundgesamtheit oder eines Modells mit griechischen Buchstaben (z. B. θ,β) bezeichnet.

  • Das arithmetische Mittel in der Grundgesamtheit: μ.
  • Die Varianz in der Grundgesamtheit: σ2.
  • Den Anteilswert einer dichotomen Variablen in der Grundgesamtheit: π.
  • Der Achsenabschnitt β0 und die Steigung β1 im einfachen linearen Regressionsmodell Yi=β0+β1xi+Ui.

Eine Schätzfunktion für einen unbekannten Parameter wird häufig durch einen Großbuchstaben der Parameterbezeichnung aus der beschreibenden Statistik bezeichnet. Die Schätzfunktion ergibt sich aus den Stichprobenvariablen X1,,Xn.

Parameter Bedingung Schätzfunktion Verteilung
μ X¯=1ni=1nXi 1. XiN(μ;σ2)X¯N(μ;σ2/n)

2. Wenn der zentrale Grenzwertsatz gilt, dann gilt X¯N(μ;σ2/n)

σ2 μ bekannt S*2=1ni=1n(Xiμ)2 XiN(μ;σ2)nS*2σ2χn2
σ2 μ unbekannt Sn2=1n1i=1n(XiX¯)2 XiN(μ;σ2)(n1)Sn2σ2χn12
π Π=1ni=1nXi 1. Ziehen mit Zurücklegen: ΠB(n;π)

2. Ziehen ohne Zurücklegen: ΠHyp(N;M;n)
    mit M=πN und N der Umfang der Grundgesamtheit.

β0, β1 Bk=i=1nYiwi(k)(x1,,xn) Wenn UiN(0;σu2), dann folgt BkN(βk;σBk2)
Parameter Punktschätzer 1α Konfidenzintervall
μ μ^=x¯=1ni=1nxi 1. Wenn σ bekannt: [X¯z1α/2σ/n;X¯+z1α/2σ/n]
2. Wenn σ unbekannt: [X¯tn1;1α/2S/n;X¯+tn1;1α/2S/n]
σ2 σ^2=sn2=1n1i=1n(xix¯)2
π π^=p=1ni=1nxi 1. Ziehen mit Zurücklegen: Wenn ΠN(π;π(1π)n), dann gilt approximativ:

[Πz1α/2π(1π)n;Π+z1α/2π(1π)n]

2. Ziehen ohne Zurücklegen: Wenn ΠN(π;π(1π)nNnN1), dann gilt approximativ:

[Πz1α/2π(1π)nNnN1;Π+z1α/2π(1π)nNnN1]

Bei der Berechnung eines Schätzintervalls mittels einer Stichprobe in 1. und 2. wird π durch p ersetzt.

Einzelnachweise

  1. Yates, F. (1934). Contingency Tables Involving Small Numbers and the χ2 Test. Supplement to the Journal of the Royal Statistical Society 1(2): 217–235. JSTOR Archive for the journal