Nullmenge

Aus testwiki
Version vom 23. Februar 2025, 13:38 Uhr von imported>Untermieter321 (growthexperiments-addlink-summary-summary:1|1|0)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Als Nullmenge (oder auch μ-Nullmenge) bezeichnet man in der Mathematik eine Teilmenge A eines Maßraums (Ω,Σ,μ) (genauer: A ist ein Element der zugehörigen σ-Algebra Σ), die das Maß null hat. Sie ist nicht mit der leeren Menge zu verwechseln; tatsächlich kann eine Nullmenge sogar unendlich viele Elemente enthalten. Manche Autoren nehmen in der Definition von Nullmenge auch vernachlässigbare Mengen hinzu, d. h. solche, die Teilmenge einer Nullmenge, aber nicht notwendigerweise Element der σ-Algebra sind und denen deswegen selbst eventuell kein Maß zugeordnet ist. Wird allen Mengen, die sich nur um eine solche vernachlässigbare Menge von einem Element der σ-Algebra unterscheiden, ebenfalls ein Maß zugeordnet, spricht man von der Vervollständigung des Maßes, wie sie etwa in der Definition des Lebesgue-Maßes verwendet wird.

Von einer Eigenschaft, die für alle Elemente des Maßraums außerhalb einer μ-Nullmenge gilt, sagt man, dass sie μ-fast überall gilt. Ist μ ein Wahrscheinlichkeitsmaß, so sagt man auch „μ-fast sicher“ anstelle von „μ-fast überall“.

Beispiele

Sei (X,,μ) ein Maßraum.

  • Die leere Menge bildet eine μ-Nullmenge.
  • Sei (An)n eine Folge von μ-Nullmengen, dann ist auch deren (abzählbare) Vereinigung eine μ-Nullmenge, d. h., es gilt
μ(nAn)=0.

Lebesgue-Maß

Für das Lebesgue-Maß λ auf bzw. λn auf n gilt:

  • Eine Teilmenge N von n ist genau dann eine Lebesgue-Nullmenge, wenn zu jedem ε>0 eine Folge (Ii)i von achsenparallelen n-dimensionalen Würfeln oder Quadern existiert mit NiIi und iλn(Ii)<ε.[1][2]
  • Jede abzählbare Teilmenge des n ist eine Nullmenge. Insbesondere ist die Menge der rationalen Zahlen in der Menge der reellen Zahlen eine Nullmenge.
  • Jeder echte Untervektorraum, insbesondere jede Hyperebene, des n ist eine Nullmenge. Dasselbe gilt für affine Unterräume und Untermannigfaltigkeiten, deren Dimension kleiner als n ist.
  • Die Cantor-Menge ist eine überabzählbare Nullmenge in der Menge der reellen Zahlen.

Verallgemeinerungen

Inhalte auf Halbringen

Man kann Nullmengen auch allgemeiner für Elemente eines Halbringes definieren. Eine Menge A aus heißt Nullmenge, wenn für den Inhalt μ gilt μ(A)=0. Diese Verallgemeinerung beinhaltet sowohl die obige Definition, da jede σ-Algebra auch ein Halbring ist und jedes Maß auch ein Inhalt ist, als auch den Fall für Ringe und Prämaße.

Differenzierbare Mannigfaltigkeiten

Für differenzierbare Mannigfaltigkeiten gibt es im Allgemeinen keine sinnvolle Verallgemeinerung des Lebesgue-Maßes. Dennoch kann der Begriff der Lebesgue-Nullmengen sinnvoll auf differenzierbare Mannigfaltigkeiten übertragen werden: Sei M eine n-dimensionale differenzierbare Mannigfaltigkeit und CM, dann heißt C eine Lebesgue-Nullmenge, wenn für jede Karte h:UV mit Vn die Menge h(CU) eine Lebesgue-Nullmenge in n ist.[1]

Mit dieser Definition lässt sich der Satz von Sard auf differenzierbare Mannigfaltigkeiten übertragen. Im Fall von pseudo-riemannschen Mannigfaltigkeiten sind diese Lebesgue-Nullmengen identisch mit den Nullmengen bezüglich des Riemann-Lebesgueschen Volumenmaßes.[3]

Eigenschaften

Literatur

  • Jürgen Elstrodt: Maß- und Integrationstheorie. 4., korrigierte Auflage. Springer, Berlin u. a. 2005, ISBN 3-540-21390-2.
  • Heinz Bauer: Maß- und Integrationstheorie. 2., überarbeitete Auflage. de Gruyter, Berlin u. a. 1992, ISBN 3-11-013626-0.

Einzelnachweise