Integration durch Substitution

Aus testwiki
Version vom 19. Januar 2025, 10:34 Uhr von imported>Crazy1880 (Vorlagen-fix (ISBN))
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Die Integration durch Substitution oder die Substitutionsregel ist eine wichtige Methode in der Integralrechnung, um Stammfunktionen zu finden und bestimmte Integrale auszuwerten. Die Substitutionsmethode erlaubt es, einen „komplizierten“ Integranden durch einen „einfachen“ Integranden zu ersetzen und damit das gegebene Integral auf ein einfacher handhabbares Integral zurückzuführen. Der im Hintergrund der Substitutionsmethode stehende Transformationssatz gehört zu den wichtigsten Sätzen der Analysis.

Die Substitutionsregel der Integralrechnung ist die Umkehrung der Kettenregel der Differentialrechnung. Bei Integralen über Funktionen mehrerer Variablen kommt der Transformationssatz zur Anwendung, der allerdings eine bijektive Substitutionsfunktion verlangt.

Aussage der Substitutionsregel

Ist f:I eine stetige Funktion auf einem reellen Intervall I und φ:[a,b]I eine stetig differenzierbare Funktion, so gilt

abf(φ(x))φ(x)dx=φ(a)φ(b)f(t)dt.[1]

Heuristische Herleitung

Die Substitutionsregel lässt sich mithilfe des Differentialkalküls herleiten: Dazu substituiert man t=φ(x) und schreibt die Ableitung als dtdx=φ(x). Die linke Seite dieser Gleichung fasst man als Quotient von zwei Differentialen auf, wodurch man nach Multiplikation mit dx die Gleichung φ(x)dx=dt erhält. Durch Einsetzen in das Integral erhält man

f(φ(x))φ(x)dx=f(t)dt.

Im linken Integral ist x die Integrationsvariable, im rechten Integral nun t.

Bei bestimmten Integralen erfordert dieser Wechsel der Integrationsvariablen noch eine Anpassung der Integrationsgrenzen: Für x=a ist t=φ(a) und für x=b ist t=φ(b). Damit erhält man schließlich

abf(φ(x))φ(x)dx=φ(a)φ(b)f(t)dt.

Beweis

Ist F eine Stammfunktion von f, so gilt für die Ableitung der zusammengesetzten Funktion Fφ nach der Kettenregel

(Fφ)(x)=F(φ(x))φ(x)=f(φ(x))φ(x).

Also ist Fφ eine Stammfunktion von (fφ)φ. Durch zweimaliges Anwenden des Hauptsatzes der Differential- und Integralrechnung erhält man die Substitutionsregel:

abf(φ(x))φ(x)dx=(Fφ)(x)|ab=F(φ(b))F(φ(a))=φ(a)φ(b)f(t)dt.

Transformationssatz

Die Substitutionsmethode lässt sich unter etwas engeren Voraussetzungen auch „rückwärts“ durchführen. Das ist die Substitution 2. Art. Ausgangspunkt ist für eine stetige Funktion f:I mit α,βI das Integral

αβf(x)dx.

Man benutzt eine Funktion φ:[a,b]I, die injektiv und stetig differenzierbar ist. Dann existiert die Umkehrfunktion φ1. Man kann die Substitutionsregel nun von rechts nach links lesen:

αβf(x)dx=φ1(α)φ1(β)f(φ(t))φ(t)dt.

Sie lässt sich wie folgt interpretieren: Transformiert man die Variable x mittel x=φ(t), so ändert sich der Wert des Integrals nicht, wenn man die neue Funktion fφ mit der Ableitung von φ multipliziert und die Integralgrenzen wie oben anpasst.[2] In dieser Fassung nennt man die Substitutionsregel deshalb auch Transformationsformel.[3]

Bei geschickter Wahl der Funktion φ kann entgegen dem ersten Anschein der Integrand vereinfacht werden.

Substitution eines bestimmten Integrals

Beispiel 1

Berechnung des Integrals

0asin(2x)dx

für eine beliebige reelle Zahl a>0: Durch die Substitution t=φ(x)=2x erhält man dt=φ(x)dx=2dx, also dx=12dt, und damit:

0asin(2x)dx=φ(0)φ(a)sin(t)12dt=02asin(t)12dt=1202asin(t)dt
=12[cos(t)]02a=12((cos(2a))(cos(0)))=12(cos(2a)+1)=12(1cos(2a)).

Beispiel 2

Berechnung des Integrals

02xcos(x2+1)dx:

Durch die Substitution t=φ(x)=x2+1 erhält man dt=2xdx, also xdx=12dt, und damit

02xcos(x2+1)dx=1215cos(t)dt=12(sin(5)sin(1)).

Es wird also x2+1 durch t ersetzt und xdx durch 12dt. Die untere Grenze des Integrals x=0 wird dabei in t(0)=02+1=1 umgewandelt und die obere Grenze x=2 in t(2)=22+1=5.

Beispiel 3

Das ist ein Beispiel für die Substitution rückwärts (Substitution 2. Art).

Für die Berechnung des Integrals

011t2dt

kann man t=sin(x) substituieren (eine Weierstraß-Substitution). Daraus ergibt sich dt=cos(x)dx. Um die Integrationsgrenzen umzurechnen, benutzt man die umgekehrte Beziehung x=arcsin(t). Die obere Grenze 1 wird zu π2, weil arcsin(1)=π2. Aus arcsin(0)=0 ergibt sich die neue untere Grenze 0. Mit 1sin2(t)=cos(t) für 0tπ2 rechnet man

011t2dt=0π21sin2(x)cos(x)dx=0π2cos(x)cos(x)dx=0π2cos2(x)dx.

Das Integral in der letzten Zeile kann mit partieller Integration oder mit der trigonometrischen Formel

cos2(x)=1+cos(2x)2

und einer weiteren Substitution berechnet werden. Es ergibt sich

011t2dt=[x2+14sin(2x)]x=0x=π2=π4.

(Damit haben wir die Fläche eines Viertelkreises berechnet.)

Substitution eines unbestimmten Integrals

Hingewiesen sei auf die Problematik des Begriffs „unbestimmtes Integral“, insbesondere in der Notation.

Voraussetzungen und Vorgehen

Ist f:I eine stetige Funktion auf einem reellen Intervall I und φ:[a,b]I eine stetig differenzierbare Funktion, so gilt

F(φ(x))=f(φ(x))φ(x)dx.

wobei F eine Stammfunktion von f ist.

Das Entscheidende bei der Substitution in einem unbestimmten Integral ist, dass am Ende der Rechnung die substituierte Variable t wieder durch den Term φ(x) ersetzt werden muss (Rücksubstitution).

Beispiel 1

Durch quadratische Ergänzung und anschließende Substitution t=x+1, dx=dt erhält man

1x2+2x+2dx=1(x+1)2+1dx=1t2+1dt=arctan(t)+C=arctan(x+1)+C

Beispiel 2

Mit der Substitution t=x2,dt=2xdx erhält man

xcos(x2)dx=122xcos(x2)dx=12cos(t)dt=12(sin(t)+C)=12sin(x2)+C

Spezialfälle der Substitution

Nachfolgend wird davon ausgegangen, dass die Integrationsvariable mit x benannt ist.

Lineare Substitution

Erscheint in einem Integranden die Integrationsvariable x stets nur innerhalb eines Terms ax+b mit a0, so kann wie folgt vorgegangen werden: Ist F eine Stammfunktion von f, dann gilt

f(ax+b)dx=1aF(ax+b)+C.

Zum Beispiel gilt

e3x+1dx=13e(3x+1)+C,

da f(x)=ex=F(x) und a=3.

Logarithmische Integration

Ist der Integrand ein Bruch, dessen Zähler die Ableitung des Nenners ist, kann das betreffende Integral schnell gelöst werden:

f(x)f(x)dx=ln|f(x)|+C.

Es liegt hier eine Substitution 1. Art mit t=f(x) vor.

Zum Beispiel gilt

xx2+1dx=122xx2+1dx=12ln(x2+1)+C,

da f(x)=x2+1 die Ableitung f(x)=2x hat.

Eulersche Substitution

Nach einem Satz von Bernoulli lassen sich alle Integrale des Typs

ax2+bx+cdx

und

dxax2+bx+c

elementar integrieren.

Euler hat hierzu mehrere Substitutionen 2. Art vorgeschlagen, die sich darin unterscheiden, welche Eigenschaften das konkrete Polynom ax2+bx+c hat.

Beispiel:

dxx2+1

Die Substitution t=x+x2+1 führt zu x=t212t und dx=(12+12t2)dt. Damit ergibt sich

dxx2+1=12+12t2t2+12tdt=dtt=lnt+C=ln(x+x2+1)+C.

Siehe auch

Literatur

  • Harro Heuser: Lehrbuch der Analysis. Teil 1, 5. Auflage, B. G. Teubner, Stuttgart 1988, ISBN 3-519-42221-2, S. 464
  • Konrad Königsberger: Analysis 1, Springer, Berlin 1992, ISBN 3-540-55116-6, S. 200–201
  • Richard Courant: Vorlesungen über Differential- und Integralrechnung 1, 4. Auflage, Springer, Berlin / Heidelberg / New York 1971, ISBN 3-540-05466-9, S. 182–191

Einzelnachweise