Sophie-Germain-Primzahl

Aus testwiki
Version vom 6. April 2022, 02:49 Uhr von 2003:c3:6727:db00:ac40:5ea9:43a5:738a (Diskussion) (Beispiele)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Eine Primzahl p nennt man Sophie-Germain-Primzahl oder auch Germainsche Primzahl, wenn auch 2p + 1 eine Primzahl ist (2p + 1 ist dann eine sichere Primzahl (vom englischen Safe prime)). Diese Primzahlen sind nach der Mathematikerin Sophie Germain (1776–1831) benannt, die sich mit der Fermatschen Vermutung beschäftigte und bewies, dass der erste Fall der Vermutung für alle Sophie-Germain-Primzahlen zutrifft.[1]

Beispiele

p = 2 ist eine Sophie-Germain-Primzahl, denn 2p + 1 = 5 ist prim. Das Gleiche gilt für 3, 5 und 11.

p = 7 ist keine Sophie-Germain-Primzahl, da 2p + 1 = 15 nicht prim ist.

Zwischen 1 und 10.000 gibt es die folgenden 190 Sophie-Germain-Primzahlen:

2 3 5 11 23 29 41 53 83 89 113 131 173 179 191 233 239 251 281 293
359 419 431 443 491 509 593 641 653 659 683 719 743 761 809 911 953 1013 1019 1031
1049 1103 1223 1229 1289 1409 1439 1451 1481 1499 1511 1559 1583 1601 1733 1811 1889 1901 1931 1973
2003 2039 2063 2069 2129 2141 2273 2339 2351 2393 2399 2459 2543 2549 2693 2699 2741 2753 2819 2903
2939 2963 2969 3023 3299 3329 3359 3389 3413 3449 3491 3539 3593 3623 3761 3779 3803 3821 3851 3863
3911 4019 4073 4211 4271 4349 4373 4391 4409 4481 4733 4793 4871 4919 4943 5003 5039 5051 5081 5171
5231 5279 5303 5333 5399 5441 5501 5639 5711 5741 5849 5903 6053 6101 6113 6131 6173 6263 6269 6323
6329 6449 6491 6521 6551 6563 6581 6761 6899 6983 7043 7079 7103 7121 7151 7193 7211 7349 7433 7541
7643 7649 7691 7823 7841 7883 7901 8069 8093 8111 8243 8273 8513 8663 8693 8741 8951 8969 9029 9059
9221 9293 9371 9419 9473 9479 9539 9629 9689 9791

Vorlage:Absatz Die ersten Sophie-Germain-Primzahlen p kann man auch dem folgenden OEIS-Link entnehmen:

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, … (Vorlage:OEIS)

Die dazugehörigen sicheren Primzahlen 2p+1 sind die folgenden:

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, … (Vorlage:OEIS)

Der folgenden Liste kann man die 10 größten bekannten Sophie-Germain-Primzahlen entnehmen. Sämtliche Entdecker dieser Primzahlen sind Teilnehmer des PrimeGrid-Projektes.

Rang Rang in
Primzahl-
listeVorlage:FN[2][3]
Primzahl p Dezimal-
stellen
von p
Datum der
Entdeckung
Entdecker Quelle
1 1609. 2618163402417212900001 388342 29. Februar 2016 Scott Brown (USA) [4][5]
2 1678. 1854363790051526666671 200701 4. oder 9. April 2012 Lee Blyth (AUS) [6][7]
3 1697. 18302722654401 79911 22. März 2010 Tom Wu [8]
4 1703. 64862102763034522538241 76424 18. November 2009 Zoltán Járai, Gabor Farkas, Timea Csajbok, János Kasza, Antal Járai [9]
5 1704. 62036630735656522538241 76424 2. November 2009 Zoltán Járai, Gabor Farkas, Timea Csajbok, János Kasza, Antal Járai [10]
6 1722. 106866944722110881 63553 17. Mai 2020 Michael Kwok [11]
7 1729. 9906450395722000081 60220 1. April 2016 S. Urushihata [12]
8 1743. 60709521763111 53081 18. September 2009 Tom Wu [13]
9 1748. 4804730572521724031 51910 25. Januar 2007 David Underbakke [14]
10 1752. 13721194129219521719601 51780 3. Mai 2006 Zoltán Járai, Gabor Farkas, Timea Csajbok, János Kasza, Antal Járai [15]

Vorlage:FNBox

Bedeutung

Eigenschaften

  • Eine Sophie-Germain-Primzahl kann im Dezimalsystem niemals die Endziffer 7 haben.
Beweis:
Sei p eine Primzahl mit Endziffer 7. Dann kann man p darstellen als p = 10k + 7. Dann gilt: 2p + 1 = 20k + 14 + 1 = 20k + 15 = 5·(4k + 3).
Das bedeutet, 2p + 1 ist durch 5 teilbar, aber größer als 14, also nicht prim.
  • Alle Sophie-Germain-Primzahlen p>3 gehören der Restklasse p5(mod6) an, haben also die Form p=6n+5 mit ganzzahligem n.
Beweis:
Alle Zahlen der Restklassen r ≡ 0 (mod 6), r ≡ 2 (mod 6) und r ≡ 4 (mod 6) sind gerade und demnach durch 2 teilbar.
Alle Zahlen der Restklassen r ≡ 0 (mod 6) und r ≡ 3 (mod 6) sind durch 3 teilbar.
Zwar existieren Primzahlen in der Restklasse r ≡ 1 (mod 6), jedoch ergibt 2·(6n+1)+1 = 12n+3 = 3·(4n+1) – und 3·(4n+1) ist durch 3 teilbar.
Als einzige Sechser-Restklasse für die Sophie-Germain-Primzahlen bleibt die Restklasse r ≡ 5 (mod 6) übrig. Nur in diesem Fall hat die zu einer Sophie-Germain-Primzahl gehörende sichere Primzahl die Form 2·(6n+5)+1 = 12n+11 ≡ 5 (mod 6) und kann prim sein.

Zusammenhang mit den Mersenne-Zahlen

Die folgende Eigenschaft wurde von Leonhard Euler und Joseph-Louis Lagrange bewiesen:

Ist p > 3 eine Sophie-Germain-Primzahl mit p ≡ 3 (mod 4), dann ist 2p+1 ein Teiler der p-ten Mersenne-Zahl M(p).
Beispiel:
p = 11 ist eine Sophie-Germain-Primzahl, denn 2p+1 = 23 ist prim. Weiter ist 11 ≡ 3 (mod 4), denn 11 dividiert durch 4 ergibt als Rest 3.
Die 11. Mersenne-Zahl M(11) = 211-1 = 2047 ist also nicht prim, sondern durch 2p+1 = 23 teilbar; konkret ist M(11) = 23 · 89.

Häufigkeit von Sophie-Germain-Primzahlen

1922 veröffentlichten Godfrey Harold Hardy und John Edensor Littlewood ihre Vermutung bzgl. der Häufigkeit von Sophie-Germain-Primzahlen:

Die Anzahl aller Sophie-Germain-Primzahlen unterhalb einer Grenze N beträgt ungefähr

2C22N1ln(x)ln(2x+1)dx2C2Nln2(N)

mit C2 = 0,6601618158 (siehe Primzahlzwillingskonstante). Diese Formel kann man mit den bekannten Sophie-Germain-Primzahlen recht gut bestätigen. Für N = 104 liefert die Vorhersage 156 Sophie-Germain-Primzahlen, was einen Fehler von 18 % zur exakten Anzahl von 190 bedeutet. Für N = 107 liefert die Vorhersage 50822, was bereits nur noch 9 % vom exakten Wert 56032 entfernt ist. Eine numerische Approximation des Integrals liefert noch bessere Ergebnisse, etwa 195 für N = 104 (Fehler nur noch 2,6 %) und 56128 für N = 107 (Fehler fast vernachlässigbar bei 0,17 %).

Die Dichte der Sophie-Germain-Primzahlen fällt in der Größenordnung um ln(N)-mal stärker als die der Primzahlen selbst. Sie findet Anwendung für eine genauere Laufzeitabschätzung für den AKS-Primzahltest, der die Primeigenschaft in polynomialer Zeit feststellen kann.

Cunningham-Kette

Bei einer Cunningham-Kette der ersten Art handelt es sich, mit Ausnahme der letzten Zahl, um eine Folge von Sophie-Germain-Primzahlen. Ein Beispiel für eine solche Kette ist die Folge: 2, 5, 11, 23, 47.

Offene Fragen

Man vermutet, dass es unendlich viele Sophie-Germain-Primzahlen gibt, aber ein Beweis dafür wurde bis heute nicht gefunden.

Einzelnachweise

Vorlage:Navigationsleiste Primzahlklassen