Punktprozess

Aus testwiki
Version vom 2. Dezember 2024, 18:00 Uhr von 134.60.67.135 (Diskussion) (Moment Maße)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Ein Punktprozess ist ein spezieller stochastischer Prozess und somit Untersuchungsobjekt der Wahrscheinlichkeitstheorie, einem Teilgebiet der Mathematik. Anschaulich modellieren Punktprozesse die zufällige Verteilung von Punkten, im einfachsten Fall auf den positiven reellen Zahlen, im n oder in allgemeineren Mengen. Bekanntestes Beispiel eines Punktprozesses ist der Poisson-Prozess, der auch Poisson-Punkt-Prozess genannt wird.

Definition

Sei (𝕏,𝒳) ein messbarer Raum. Ein Punktprozess ist ein Spezialfall eines zufälligen Maßes. Wir betrachten einen Raum M, dessen Elemente s-endliche Zählmaße auf dem Raum 𝕏 sind. Dann ist die Zufallsvariable

ξ:(Ω,)(M,),

ein Punktprozess.

Simpler Punktprozess

Ein Punktprozess wird simple oder einfach genannt, falls jeder Punkt fast sicher distinkt ist.

Moment-Maße

Für einen Punktprozess ξ lassen sich Maße für die Momente und faktoriellen Momente definieren.

n-tes Moment-Maß

Das n-te Moment-Maß Mn für eine nicht-negative messbare Funktion f:n+ ist definiert durch:

𝔼[(x1,,xn)ξf(x1,,xn)]=Rnf(x1,,xn)Mn(dx1,,dxn)

n-tes faktorielles Moment-Maß

Betrachte des Maß (δ bezeichnet das Diracmaß)

N(n)=(x1xn)ξδ(x1xn),

dann ist das n-te faktorielle Moment-Maß M(n) für Borell-Mengen Ai in ζ definiert als

M(n)(A1××An)=𝔼[N(n)(A1××An)].

Das heißt für eine nicht-negative messbare Funktion f:n+:

𝔼[(x1xn)ξf(x1,,xn)]=Rnf(x1,,xn)M(n)(dx1,,dxn)

Falls das n-te faktorielle Moment-Maß absolut stetig bezüglich eines Referenz-Maßes λn (üblicherweise das Lebesgue-Maß) ist, so nennt man die Radon-Nikodým Dichte

M(n)(A1××An)=A1××Anρ(n)(x1,,xn)dλ(x1)dλ(xn)

für alle Borell-Mengen Ai in ζ Korrelationsfunktion (auch multivariate Intensität).

Paar-Korrelationsfunktion

Sei ρ(n) die Radon-Nikodým-Dichte eines absolut stetigen n-ten faktoriellen Moment-Maß. Dann lässt sich die Paar-Korrelationfunktion oder 2-Punkt Korrelationsfunktion wie folgt bilden

ϑ(x1,x2)=ρ(2)(x1,x2)ρ(1)(x1)ρ(1)(x2)

für zwei Punkte x1,x2.

Definition auf den positiven Zahlen

Eine Folge von Zufallsvariable (Xn)n heißt ein Punktprozess (auf +), wenn gilt:

  • Es ist X0=0
  • Die Folge ist fast sicher streng monoton wachsend, das heißt X0<X1<X2<

Beispiele

Ein einfaches Beispiel für einen Punktprozess erhält man, wenn man eine unabhängig identisch verteilte Folge von Zufallsvariablen (Yk)k, die fast sicher echt positive Werte annehmen, betrachtet. Definiert man dann

X0=0 und
Xn:=i=1nYi,

so ist die Folge der Xn monoton wachsend, somit handelt es sich um einen Punktprozess.

Poisson-Punktprozess

Vorlage:Hauptartikel

Hawkes-Prozess

Ein Hawkes-Prozess Ht ist ein einfacher Punktprozess, der einen Punktprozess modelliert, bei dem das Auftreten eines Ereignisses, einen positiven Einfluss (d. h. erhöhen) auf die Intensität für zukünftige Ereignisse hat.

Die bedingte Intensität λ(t) folgende Form hat

λ(t)=μ(t)+tν(ts)dHs=μ(t)+k:Tk<tν(tTk)

wobei ν:++ ein Integralkern ist, der den positiven Einfluss vergangener Ereignisse Ti auf die jetzige Intensität λ(t) modelliert. Dabei ist μ(t) entweder der zu erwartende, vorhersagbare, oder deterministische Teil der Intensität. {Ti:Ti<Ti+1} sind Stoppzeiten des i-ten Ereignisses.

Determinantale Punktprozesse

Vorlage:Hauptartikel

Eigenschaften

Campbellsche Formel

Die Campbellsche Formel beschreibt eine wichtige Eigenschaft eines Punktprozesses ξ zu seiner Intensität γ. Für alle γ-integrierbaren Funktionen f(x) gilt

𝔼(f(x)ξ(dx))=f(x)γ(dx)

Echte Punktprozesse

Man unterscheidet zwischen echten und unechten Punktprozessen. Ein Punktprozess ξ wird dann echt genannt, wenn ein Zufallsvariable M mit Werten in 0{} und Zufallsvariablen (Xi)i existieren, so dass fast sicher gilt

ξ(B)=n=1MδXi(B)B𝒳

Es lässt sich zeigen, dass es für jeden Poisson Punktprozesse einen echten Punktprozess gibt, der die gleiche Verteilung auf demselben Raum besitzt.

Erläuterung

Ein Punktprozess auf + modelliert die zufällige Verteilung von Punkten auf den positiven Zahlen. Dabei besagt der erste Teil der Definition, dass der erste Punkt der Nullpunkt sein soll. Der zweite Teil besagt, dass die Punkte mit einer Ordnung versehen sind, also schon der Größe nach sortiert sind.

Im obigen Beispiel werden die Zufallsvariablen über Xn über ihre Zuwächse definiert. Dabei entsprechen die Verteilungen der Zuwächse, hier im Beispiel Xn+1Xn=Yn, im allgemeinen Fall Xn+1Xn, der Verteilung des Abstandes der Punkte. So sind beispielsweise beim Poisson-Prozess die Abstände zwischen zwei Punkten exponentialverteilt.

Der zugehörige Zählprozess

Jedem Punktprozess auf + lässt sich durch

Nt=i=1𝟏{Xit}

ein Zählprozess zuordnen (𝟏A bezeichnet hier die charakteristische Funktion auf der Menge A). Anschaulich läuft der Zählprozess von Nullpunkt aus mit gleichbleibender Geschwindigkeit die positiven Zahlen ab und zählt, wie viele Punkt er bis zum Zeitpunkt t schon angetroffen hat. Zählprozess und Punktprozess beleuchten hier zwei Aspekte derselben Idee. In ihrer Formalisierung unterscheiden sie sich jedoch deutlich, wie sich schon an ihrer Indexmenge zeigt.

Literatur