Fluss (Mathematik)

Aus testwiki
Version vom 2. Januar 2025, 16:27 Uhr von imported>-haznK (growthexperiments-addlink-summary-summary:1|0|1)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Das Konzept eines (Phasen-)Flusses in der Mathematik ermöglicht die Beschreibung zeitabhängiger (System-)Zustände. Es ist deshalb vor allem für die Analyse gewöhnlicher Differentialgleichungen von Bedeutung und findet damit Anwendung in vielen Bereichen der Mathematik und Physik. Formal ist der Fluss eine Operation einer Parameterhalbgruppe (Γ,+) auf einer Menge X. Meist, insbesondere in der Theorie der Gewöhnlichen Differentialgleichungen, wird unter einem Fluss eine Operation des Monoids (0,+) verstanden.

Der Begriff ist nicht mit dem Begriff Fluss in der Netzwerktheorie, Graphentheorie und Informatik zu verwechseln (siehe Flüsse und Schnitte in Netzwerken).

Definition

Sei X eine Menge, Γ eine Parametermenge. Eine Abbildung

φ:X×ΓX

heißt Fluss, wenn die folgenden Bedingungen erfüllt sind:

φ(x,0)=x  xX

und

φ(φ(x,s),t)=φ(x,s+t)  xX, s,tΓ

Wir haben also eine Halbgruppenwirkung.

Die Menge

𝒪(x,φ):={φ(x,t)|tΓ}

heißt Orbit von x.

Falls die Abbildung φ:X×ΓX differenzierbar ist, spricht man auch von einem differenzierbaren Fluss.

Man kann auch Flüsse betrachten, die zu einem anderen Zeitpunkt s starten, das heißt mit Initialbedingung

φ(x,s)=x  xX.

Diese notiert man häufig mit φs,t(x) oder φs(x,t).

Lokaler Fluss

Für als Parametermenge ist allgemeiner ein lokaler Fluss φ:UX für eine offene Teilmenge U=xX{x}×IxX× mit offenen Intervallen 0Ix definiert, falls die Bedingungen

φ(x,0)=x  xX

und

φ(φ(x,s),t)=φ(x,s+t)  xX, s,s+tIx, tIφ(x,s)

erfüllt ist.[1] Ein lokaler Fluss mit U=X× ist ein (globaler) Fluss mit Γ=.

Diskussion

Im Hinblick auf die Analyse dynamischer Systeme beschreibt der Fluss die Bewegung im Phasenraum im Laufe der Zeit. Hierbei spricht man in Abhängigkeit von der Parametermenge Γ von einem kontinuierlichen dynamischen System (Γ=) oder einem diskreten dynamischen System (Γ=).

Betrachten wir ein System gewöhnlicher Differentialgleichungen

𝐱˙=𝐅(t,𝐱)

mit 𝐱n oder einer offenen Teilmenge davon, so werden durch den Phasenfluss die Lösungen dieses Systems in Abhängigkeit vom Anfangszustand angegeben. Man wählt dann oft auch eine implizite Form der Flussangabe und schreibt

𝐱(t) bzw. 𝐱(0).

Beispiel

Vorlage:Hauptartikel Beispielsweise kann man jedem Vektorfeld einen Fluss zuordnen. Dieser ist durch die maximale Integralkurve des Vektorfeldes gegeben. Tatsächlich ist jeder Fluss auf einer differenzierbaren Mannigfaltigkeit der Fluss eines Vektorfeldes, welches man durch F(x)=ddt|t=0Φ(t,x) erhält.

Der Ricci-Fluss spielt eine zentrale Rolle in der inzwischen bewiesenen Thurston'schen Geometrisierungsvermutung, welche eine Verallgemeinerung der Poincaré'schen Vermutung ist.

Verallgemeinerungen

Der stochastische Fluss ist eine probabilistische Verallgemeinerung des Flusses.

Einzelnachweise

Literatur

  • Manfred Denker: Einführung in die Analysis dynamischer Systeme. Springer Verlag, Berlin, Heidelberg, New York 2005, ISBN 3-540-20713-9
  • Werner Krabs: Dynamische Systeme: Steuerbarkeit und chaotisches Verhalten. B.G.Teubner, Leipzig 1998, ISBN 3-519-02638-4.