Wronski-Determinante

Aus testwiki
Zur Navigation springen Zur Suche springen

Mit Hilfe der Wronski-Determinante, die nach dem polnischen Mathematiker Josef Hoëné-Wroński (1776–1853) benannt wurde, kann man skalare Funktionen auf lineare Unabhängigkeit testen, wenn diese hinreichend oft differenzierbar sind. Dies kann insbesondere beim Lösen einer gewöhnlichen Differentialgleichung ein nützliches Hilfsmittel sein.

Definition

Für n reell- oder komplexwertige Funktionen f1,,fn auf einem Intervall I ist die Wronski-Determinante definiert durch

W(f1,,fn)(t)=|f1(t)f2(t)fn(t)f1(1)(t)f2(1)(t)fn(1)(t)f1(n1)(t)f2(n1)(t)fn(n1)(t)|,tI,

wobei in der ersten Zeile die Funktionen stehen und in den weiteren Zeilen die hochgestellten Zahlen in Klammern die erste bis (n1)-te Ableitung bezeichnen.

Eigenschaften

Die Berechnung der Wronski-Determinante von linearen, gewöhnlichen Differentialgleichungen zweiter Ordnung kann durch die Anwendung der Abelschen Identität vereinfacht werden, wenn im Fundamentalsystem in der Darstellung y(t)a1y(t)a0y(t)=0 der Koeffizient a10 ist.

Kriterium für lineare Unabhängigkeit

Gilt W(f1,,fn)(t0)0 für ein t0I, so sind die Funktionen f1,,fn auf dem Intervall I linear unabhängig. Andererseits folgt aus W(f1,,fn)(t)=0 für alle tI nicht die lineare Abhängigkeit der Funktionen f1,,fn. Das heißt, die Gleichheit bedingt nicht eine lineare Abhängigkeit auf dem Intervall I. Denn es gilt, dass die Funktionen lokal linear unabhängig sein können (siehe Gegenbeispiel).

Beispiel

Ausgehend vom Sturm-Liouville-Problem wird die Differentialgleichung zweiter Ordnung

ψ=λψ

mit den Randbedingungen ψ(0)=ψ(π)=0 betrachtet. Als Lösungsansatz wird ψ(t)=αsin(λt)+βcos(λt) für λ>0 und beliebige α,β gewählt. Aufgrund der Randbedingungen ψ(0)=ψ(π)=0 ist α0,β=0 und sin(λπ)=0, also λπ=nπ und somit λ=n2 für n. Als Lösung wird daher

ψ(t)=αsin(nt)

gewählt. Da eine weitere Lösung dieser Differentialgleichung durch ϕ=pψ=ψ mit p=1 gegeben ist (siehe Sturm-Liuoville-Problem), wird als zweite Lösung

ϕ(t)=αncos(nt)

angenommen und mittels der Wronski-Determinante auf lineare Unabhängigkeit geprüft. Es folgt

W(ϕ,ψ)(t)=|ϕ(t)ψ(t)ϕ(t)ψ(t)|=|αncos(nt)αsin(nt)αn2sin(nt)αncos(nt)|=(αn)2cos2(nt)+(αn)2sin2(nt)=(αn)2>0.

Also ist W(ϕ,ψ)(t)=|ϕ(t)ψ(t)ϕ(t)ψ(t)|>0 für t0 (genauer für alle t) und die lineare Unabhängigkeit der Funktionen ϕ(t),ψ(t) ist gegeben.

Gegenbeispiel

Als Gegenbeispiel dienen die auf den reellen Zahlen definierten Funktionen

f1(t)={0 ,falls t0,t2 ,falls t>0,undf2(t)={t2 ,falls t0,0 ,falls t>0.

Für alle t gilt

W(f1,f2)(t)=|f1(t)f2(t)f'1(t)f'2(t)|=0.

Aber λ f1(t)+μ f2(t)=0 führt für t=1 zu λ=0 und für t=1 zu μ=0, was die lineare Unabhängigkeit auf t=1 beziehungsweise für t=1 der beiden Funktionen impliziert. Für t=0 gilt f1(0)=0 und f2(0)=0, was lineare Abhängigkeit in t=0 bedeutet.

Literatur

  • H. Heuser: Gewöhnliche Differentialgleichungen. Teubner, 1995, ISBN 3-519-22227-2, S. 250.