Smithsche Determinante
Die smithsche Determinante oder auch Smith’sche Determinante bzw. Smith-Determinante, Vorlage:EnS, ist eine spezielle Determinante, die dem mathematischen Teilgebiet der Zahlentheorie angehört. Sie ist nach dem Mathematiker Henry John Stephen Smith (1826–1883) benannt, der über sie und ihren Zusammenhang mit der eulerschen Phi-Funktion im Jahre 1876 publizierte.[1] Nicht zuletzt war sie Thema einer Anzahl weiterführender Untersuchungen.
Definition der smithschen Determinante
Für eine gegebene natürliche Zahl werden alle größten gemeinsamen Teiler mit gebildet und in einer quadratischen Matrix angeordnet, wobei als Element der Zeile und der Spalte auftritt. Die aus dieser Matrix gebildete Determinante ist die smithsche Determinante . Es gilt also:[2]
Formel
Smith fand die folgende Formel, die die Verbindung zur Phi-Funktion herstellt:[3][A 1]
- Für eine gegebene natürliche Zahl gilt:
- .
Literatur
Einzelnachweise
Anmerkungen
- ↑ Shapiro bezeichnet diese Formel als somewhat unexpected result.