Satz von Hjelmslev
Der Satz von Hjelmslev (auch Hjelmslevscher Mittelliniensatz genannt, in der englischsprachigen Literatur als Hjelmslev’s theorem bekannt) ist ein Satz der Geometrie der Ebene, welcher auf den dänischen Mathematiker Johannes Hjelmslev (1873 bis 1950) zurückgeht.[1][2][3][4] Hjelmslev formuliert diesen Satz im Rahmen seiner berühmten Abhandlung über eine Neue Begründung der ebenen Geometrie, in welcher er zeigt, dass eine ebene Geometrie unter ausschließlicher Benutzung ebener Axiome, ohne Stetigkeitsbetrachtungen, ganz unabhängig von der Parallelenfrage aufgebaut werden kann.[5][6] Die dabei in § 2 der Abhandlung (Kongruenz und Symmetrie) angestellten Untersuchungen zu den ebenen Kongruenzabbildungen gipfeln im Satz von Hjelmslev,[7] welcher eine fundamentale Eigenschaft dieser Kongruenzabbildungen behandelt.
Formulierung des Satzes

Gegeben seien in der euklidischen Ebene eine Kongruenzabbildung sowie zwei Geraden und mit .
Für jeden Punkt und seinen Bildpunkt sei der Mittelpunkt der Strecke .
Dann gilt:
Entweder
- sind die Mittelpunkte alle paarweise verschieden und bilden eine einzige Gerade
oder
- die Mittelpunkte fallen zu einem einzigen Punkt zusammen.
Literatur
Originalarbeiten
Monographien
Weblinks
- Jay Warendorff: Animation zum Satz von Hjelmslev
- Frank Löbell: Link zu der Abhandlung
Einzelnachweise
- ↑ Bachmann: S. 79.
- ↑ Coxeter: S. 69.
- ↑ Vorlage:Literatur
- ↑ Pedoe: S. 195.
- ↑ Vorlage:Literatur
- ↑ In moderner Terminologie, etwa bei Karzel, Kroll: Geschichte der Geometrie seit Hilbert. S. 160 ff., ist die Rede von Hjelmslevs Begründung der ebenen absoluten Geometrie mit Halbdrehungen. Karzel / Kroll heben hinsichtlich dieser Abhandlung von Hjelmslev hervor, dass die Vorlage:Kapitälchenschen Methoden für die Weiterentwicklung der Geometrie von größter Bedeutung waren
- ↑ Vorlage:Literatur