Satz von Finsler-Hadwiger

Aus testwiki
Zur Navigation springen Zur Suche springen
Satz von Finsler-Hadwiger

Der Satz von Finsler-Hadwiger (nach Paul Finsler und Hugo Hadwiger) ist eine Aussage aus der Elementargeometrie, die eine Eigenschaft von zwei Quadraten mit einem gemeinsamen Eckpunkt beschreibt.

Für zwei Quadrate ABCD und ABCD mit gemeinsamem Punkt A und Mittelpunkten F und H seien E und G die Mittelpunkte der Strecken BD und DB, dann ist das Viereck EFGH ebenfalls ein Quadrat.

Finsler und Hadwiger beschrieben diesen Satz 1937 in einem Artikel über Relationen am Dreieck, unter denen sich auch die ebenfalls später nach ihnen benannte Ungleichung von Hadwiger-Finsler befand.

Literatur

  • Claudi Alsina, Roger B. Nelsen: Charming Proofs: A Journey Into Elegant Mathematics. MAA 2010, ISBN 978-0-88385-348-1, S. 125 (books.google.de).
  • Paul Finsler, Hugo Hadwiger: Einige Relationen im Dreieck. In: Commentarii Mathematici Helvetici, Ausgabe 10, 1937, S. 316–326, insbesondere S. 324

Vorlage:Commonscat