Satz von Darmois-Skitowitsch

Aus testwiki
Zur Navigation springen Zur Suche springen

Der Satz von Darmois-Skitovich ist ein Satz aus der Stochastik, der die Normalverteilung über unabhängige Linearformen von Zufallsvariablen charakterisiert. Der Satz ist in der mathematischen Statistik von Bedeutung, da dort in der Regel die Verteilung nicht bekannt ist.

Er ist benannt nach dem französischen Mathematikern Georges Darmois und dem russischen Mathematiker Viktor Pawlowitsch Skitowitsch.[1]

Formulierung des Satzes

Seien (Xi)i=1n unabhängige Zufallsvariablen und αi,βi0,i=1,,n. Sind nun L1=i=1nαiXi und L2=i=1nβiXi unabhängig, dann sind alle (Xi)i=1n normalverteilt.

Erläuterung des Satzes

Der Satz zeigt, dass die Unabhängigkeit der Linearformen der Zufallsvariablen zur Charakterisierung der Normalverteilung genügt und verzichtet auf die Bedingung der identischen Verteilung.

Einzelnachweise

  1. Mathematische Statistik, S. 97, von Ludger Rüschendorf, 1970. Google books Ausschnitt