Portmanteau-Test

Aus testwiki
Zur Navigation springen Zur Suche springen

Portmanteau-Tests (frz.: Mantel-tragend) sind statistische Tests, die reine Signifikanztests darstellen. Sie testen gegen eine lose formulierte Gegenhypothese, sozusagen wird gegen mehrere Gegenhypothesen unter einem Mantel getestet.

In der Zeitreihenanalyse versteht man als Portmanteau-Tests Tests, mit deren Hilfe im Rahmen der Diagnosephase für mehrere Autokorrelationskoeffizienten getestet werden kann, ob sie sich signifikant von null unterscheiden.

Diese Tests stellen streng genommen nur ein Beispiel von Portmanteau-Tests dar.

Box-Pierce-Test

Die ursprüngliche Version des Tests stammt von Box/Pierce[1].

Die Hypothesen für diesen Test lauten:

H0:ρ1(Zt^)==ρK(Zt^)=0 und
H1:ρl(Zt^)0 gilt für mindestens ein l.

Dabei ist ρl(Zt^) die (empirische) Autokorrelation der Reihe (Zt^) zum Lag (der zeitlichen Verschiebung) l und K die Anzahl der zu testenden Autokorrelationen.

Die Teststatistik wird Q-Statistik genannt:

QBP=Tl=1Kρl2(Zt^),

wobei T der Umfang des Datensatzes ist.

Diese Prüfgröße ist unter der Nullhypothese χ2-verteilt mit ν=Kpq Freiheitsgraden; H0 kann also verworfen werden, falls

QBP>χν;1α2.

Die Auswahl eines geeigneten Wertes für K ist problematisch. Ist K zu niedrig, greift die Asymptotik der χ2-Approximation nicht. Auch ein zu großes K hat nicht gewünschte Effekte. Für die Bestimmung von K kann folgende Faustregel verwendet werden:

K2T.

Ljung-Box-Test

Da der Box-Pierce-Test nur bei langen Zeitreihen mit mehr als 100 Zeitreihenwerten zufriedenstellend arbeitet, wird von Ljung/Box[2] eine abgewandelte Teststatistik herangezogen. Dabei wird T durch T(T+2)/(T-K) ersetzt. Als Teststatistik ergibt sich:

QLB=T(T+2)l=1K1Tlρl2(Zt^).

Einzelnachweise