Orthografische Azimutalprojektion

Aus testwiki
Zur Navigation springen Zur Suche springen

Vorlage:Belege fehlen

Prinzipskizze der Projektion

Die orthografische Azimutalprojektion ist eine Kartenprojektion, bei der die (Erd-)Oberfläche durch Parallelprojektion auf eine Ebene abgebildet wird. Mit dieser Projektion kann maximal eine Halbkugel dargestellt werden. Sie ist weder flächen- noch winkeltreu, dafür aber recht anschaulich, da sie die Oberfläche so zeigt, wie sie aus (unendlich) großer Entfernung „aus dem Weltraum“ zu sehen wäre. Sie bildet entlang der konzentrischen Kreise um den Mittelpunkt (Breitenkreise bei polarer Projektion) längentreu ab.

Diese Projektion wird häufig für Mond- und Planetenkarten verwendet. Insbesondere der Mond, der uns stets dieselbe Seite zeigt, wird so abgebildet, wie er von der Erde aus gesehen wird. Die schiefe Projektion (mit Mittelpunkt weder am Pol noch am Äquator) wird oft für Ansichtskarten und andere anschauliche Darstellungen der Erde benutzt.

Mathematik

Die Formeln für die sphärische orthografische Projektion lassen sich mithilfe der Trigonometrie herleiten. Sie werden ausgedrückt durch die Länge (λ) und die Breite (φ) auf der Kugel. Bezeichnet man den Radius der Kugel mit R und den Mittelpunkt bzw. Ursprung der Projektion mit (λ0,φ0), so lauten die Gleichungen für die orthografische Projektion auf die Tangentialebene in (x,y) folgendermaßen:[1]

x=Rcosφsin(λλ0)y=R(cosφ0sinφsinφ0cosφcos(λλ0))

Um zu verhindern, dass Punkte auf der gegenüberliegenden Halbkugel gezeichnet werden, betrachtet man die Winkeldistanz c vom Mittelpunkt der orthografischen Projektion, die durch

cosc=sinφ0sinφ+cosφ0cosφcos(λλ0)

gegeben ist. Diese Winkeldistanz soll nicht größer sein als π2. Folglich lautet die Sichtbarkeitsbedingung:

sinφ0sinφ+cosφ0cosφcos(λλ0)0

Die Umkehrformeln sind gegeben durch:

φ=arcsin(coscsinφ0+ysinccosφ0ρ)λ=λ0+arctan(xsincρcosccosφ0ysincsinφ0)

Dabei wird verwendet:

ρ=x2+y2c=arcsinρR

Einzelnachweise

  1. John P. Snyder, Map Projections - A Working Manual, U.S. Geological Survey Professional Paper 1395, 1987, S. 149