Noetherscher Raum

Aus testwiki
Zur Navigation springen Zur Suche springen

Der noethersche topologische Raum, benannt nach Emmy Noether, ist ein mathematischer Begriff aus dem Teilgebiet der Topologie. Er ist durch den algebraischen Begriff des noetherschen Rings motiviert und findet hauptsächlich in der algebraischen Geometrie Anwendung.

Definition

Betrachtet man offene Mengen eines topologischen Raums in Analogie zu den Idealen eines Ringes, so ist folgende Definition mit Blick auf den Begriff des noetherschen Ringes naheliegend:

  • Ein topologischer Raum heißt noethersch, wenn jede aufsteigende Kette offener Mengen stationär wird, das heißt: Ist U1U2 eine Familie offener Mengen, so gibt es ein n0 mit Un=Un0 für alle nn0.

Wie in der Algebra zeigt ein einfaches Argument:

  • Ein topologischer Raum ist genau dann noethersch, wenn eine Maximalbedingung für offene Mengen gilt, das heißt: Jede nicht-leere Familie offener Mengen enthält ein maximales Element.

Da die abgeschlossenen Mengen genau die Komplemente offener Mengen sind, hat man:[1]

  • Ein topologischer Raum ist genau dann noethersch, wenn jede absteigende Kette abgeschlossener Mengen stationär wird, das heißt: Ist A1A2 eine Familie abgeschlossener Mengen, so gibt es ein n0 mit An=An0 für alle nn0.
  • Ein topologischer Raum ist genau dann noethersch, wenn eine Minimalbedingung für abgeschlossene Mengen gilt, das heißt: Jede nicht-leere Familie abgeschlossener Mengen enthält ein minimales Element.

Beispiele

  • Räume mit endlichen Topologien, insbesondere also topologische Räume mit endlicher Grundmenge sind noethersch.
  • Der affine Raum kn über einem Körper k ist mit der Zariski-Topologie ein noetherscher Raum.
  • mit der euklidischen Topologie ist nicht noethersch, denn die offenen Intervalle (0,n) bilden eine aufsteigende Folge offener Mengen, die nicht stationär wird.
  • Es gibt auch nicht noethersche Ringe, deren Spektrum ein noetherscher Raum ist: Ist k ein Körper, so ist der Ring R=k[xii]/(xi2i) nicht noethersch. Sein Nilradikal wird von den Unbestimmten erzeugt, also ist die Reduktion von R gleich k und folglich Spec(R) ein Raum mit einem Punkt, insbesondere noethersch.

Bedeutung

Auf dem Spektrum eines Ringes betrachtet man üblicherweise die Zariski-Topologie. Leicht zeigt man, dass das Spektrum eines noetherschen kommutativen Ringes ein noetherscher topologischer Raum ist. Da affine Varietäten den Radikalidealen im Ring der Polynome in endlich vielen Variablen über dem Koordinatenkörper entsprechen (Hilbertscher Nullstellensatz), und dieser Ring noethersch ist (Hilbertscher Basissatz), erhält man, dass affine Varietäten mit der Zariski-Topologie noethersch sind. Daher spielt dieser Begriff eine Rolle in der algebraischen Geometrie, in der solche Varietäten untersucht werden.

Anwendung

Insbesondere besteht eine affine Varietät aus endlich vielen irreduziblen Komponenten.

Da der einfache Beweis die typische noethersche Schlussweise verdeutlicht, soll er hier kurz wiedergegeben werden: Sei 𝒜 die Menge aller abgeschlossenen Teilmengen, die nicht endliche Vereinigung irreduzibler Mengen sind. Wird angenommen, dass diese Menge nicht leer ist, so enthält sie wegen der Minimalbedingung für abgeschlossene Mengen ein minimales Element A0. Dieses kann als Element aus 𝒜 nicht irreduzibel sein, ist also Vereinigung zweier echter abgeschlossener Mengen A1 und A2. Da A0 minimal ist, sind A1 und A2 nicht aus 𝒜 und daher endliche Vereinigung irreduzibler Mengen. Dann ist aber auch A0=A1A2 endliche Vereinigung irreduzibler Mengen, was ein Widerspruch zu A0𝒜 ist. Daher ist 𝒜 leer, insbesondere ist der Raum selbst endliche Vereinigung irreduzibler Mengen, was zu zeigen war.

Kompaktheit

Definiert man Kompaktheit durch die Überdeckungseigenschaft und verzichtet auf die Hausdorffeigenschaft, manche Autoren sprechen dann auch von quasi-kompakten Räumen, so gilt:[3]

  • Jeder noethersche Raum ist quasi-kompakt.
  • Ein topologischer Raum ist genau dann noethersch, wenn jede Teilmenge mit der Relativtopologie quasi-kompakt ist.

Weitere Eigenschaften

  • Jeder Unterraum eines noetherschen Raums ist wieder noethersch.[4]
  • Ist der topologische Raum X Vereinigung der Unterräume X1,,Xn und ist jedes Xi noethersch, so ist auch X noethersch.[5]

Einzelnachweise

  1. Ernst Kunz: Einführung in die kommutative Algebra und algebraische Geometrie, Vieweg (1980), ISBN 3-528-07246-6, Definition I.2.13
  2. Ernst Kunz: Einführung in die kommutative Algebra und algebraische Geometrie, Vieweg (1980), ISBN 3-528-07246-6, Satz I.2.14
  3. I. G. MacDonald: Algebraic Geometry, Introduction to Schemes, W. A. Benjamin Inc. (1968), Kapitel 2: Noetherian Spaces
  4. I. G. MacDonald: Algebraic Geometry, Introduction to Schemes, W. A. Benjamin Inc. (1968), Satz (2.2) (ii)
  5. I. G. MacDonald: Algebraic Geometry, Introduction to Schemes, W. A. Benjamin Inc. (1968), Satz (2.2) (iii)