Lindemann-Mechanismus

Aus testwiki
Zur Navigation springen Zur Suche springen
Die Fall-off-Kurve im Lindemann-Mechanismus. Die markierten Bereiche dienen nur der Veranschaulichung, es handelt sich um keine real existierenden Grenzen.

In der Kinetik ist der Lindemann-Mechanismus, der manchmal auch als Lindemann-Hinshelwood-Mechanismus bezeichnet wird, ein schematischer Reaktionsmechanismus für Reaktionen in der Gasphase. Das Konzept wurde 1921 von Frederick Lindemann vorgeschlagen und von Cyril Norman Hinshelwood entwickelt.[1][2] Eine scheinbar unimolekulare Reaktion wird dabei in zwei elementare Schritte zerlegt. Der Lindemann-Mechanismus wird verwendet, um Gasphasenzersetzungs- oder -isomerisierungsreaktionen darzustellen. Die Reaktionsgleichungen von Zersetzungs- oder Isomerisierungsreaktionen lassen häufig vermuten, dass eine unimolekulare Reaktion vorliegen könnte:

AP

Doch der Lindemann-Mechanismus zeigt, dass dem unimolekularen Reaktionsschritt ein bimolekularer Aktivierungsschritt vorausgeht. Für bestimmte Fälle ergibt sich daher eine Reaktion zweiter und nicht, wie zu erwarten wäre, erster Ordnung:[3] Wechselwirken zwei Moleküle A und A miteinander, so kann es zur Bildung eines angeregten Moleküls A* kommen.[4][5] Das angeregte Molekül kann nun entweder wieder desaktiviert werden, indem es mit anderen Molekülen A wechselwirkt (dies stellt die Rückreaktion dar), oder unimolekular und irreversibel zu Produkt P reagieren. Die Geschwindigkeitskonstanten werden hier mit k1, k1 und k2 bezeichnet:[4][5]

A+A k1k1 A*+A
A* k2 P

Findet der unimolekulare Schritt so langsam statt, dass er geschwindigkeitsbestimmend ist, beobachtet man eine Reaktion erster Ordnung.[5]

Geschwindigkeitsgesetz

Schema des Lindemann-Hinshelwood-Mechanismus: Zwei Moleküle A können wechselwirken und ein angeregtes Molekül A* bilden. Dieses kann entweder durch eine Rückreaktion desaktiviert werden, oder unimolekular und irreversibel zu Produkt P reagieren.

Das entsprechende Geschwindigkeitsgesetz kann aus den Geschwindigkeitsgleichungen und -konstanten hergeleitet werden:[A 1] Die Geschwindigkeit, mit der das Produkt P gebildet wird ergibt sich aus dem Bodenstein’schen Quasistationaritätsprinzip. Wir nehmen hierbei an, dass die Konzentration des aktivierten Eduktes (das Intermediat A*) in gleicher Geschwindigkeit gebildet wie verbraucht wird.[6] Diese Annahme vereinfacht die Berechnung der Ratengleichung. Die Geschwindigkeitskonstante der Hinreaktion des ersten Schritts bezeichnen wir mit k1, die Rückreaktion mit k1. Die Geschwindigkeitskonstante der Hinreaktion des zweiten Schritts bezeichnen wir mit k2.

Die Geschwindigkeit, mit der A* gebildet wird, ergibt sich somit durch folgendes differentielles Geschwindigkeitsgesetz:

d[A*]dt=k1[A]2 (Hinreaktion im ersten Schritt)

A* wird sowohl bei der Rückreaktion als auch bei der Produktbildung im zweiten Schritt verbraucht. Es ergeben sich folgende differentielle Geschwindigkeitsgesetze:

d[A*]dt=k1[A*][A] (Rückreaktion im ersten Schritt)
d[A*]dt=k2[A*] (Hinreaktion im zweiten Schritt)

Insgesamt betrachtet ergibt sich:

d[A*]dt=k1[A]2k1[A][A*]k2[A*]

Nach dem Quasistationaritätsprinzip ist die Bildung von A* gleich dem Verbrauch von A*:

d[A*]dt=k1[A]2k1[A][A*]k2[A*]0

Daher ergibt sich:

k1[A]2=k1[A*][A]+k2[A*]

Aufgelöst nach [A*]:

[A*]=k1[A]2k1[A]+k2

Das differentielle Geschwindigkeitsgesetz ergibt so für die Gesamtreaktion:[7][6]

d[P]dt=k2[A*]=k1k2[A]2k1[A]+k2

Dieses Geschwindigkeitsgesetz ist (noch) keine Reaktion erster Ordnung bezüglich A.[5] Wenn jedoch die Desaktivierung angeregter A*-Moleküle durch die Rückreaktion schneller erfolgt als die unimolekulare Reaktion zum Produkt P,

k1[A][A*]k2[A*]

so kann man k2 im Nenner vernachlässigen. Fasst man die Konstanten k1, k1 und k2 zu einer Konstante kR zusammen, gilt näherungsweise:

d[P]dtk1k2[A]2k1[A]=k1k2[A]k1=kR[A]

Dies ist ein Geschwindigkeitsgesetz erster Ordnung.[5]

Reaktionsordnung

Die Reaktionsordnung einer Reaktion, die annähernd dem Lindemann-Mechanismus folgt, ist druckabhängig. Bei hohem Druck (Hochdruckgrenzwert kfür [A]) handelt es sich um eine Reaktion erster und bei niedrigem Druck (Niederdruckgrenzwert k0für [A]0) um eine Reaktion zweiter Ordnung.

Siehe auch

Anmerkungen

  1. Ebenfalls geläufig sind die Ausdrücke Ratengleichung, Ratengesetz und Ratenkonstante. Diese Ausdrücke werden Synonym verwendet, der Übersichtlichkeit halber soll hier konsistent eine Schreibweise verwendet werden.

Einzelnachweise

  1. Vorlage:Literatur
  2. Vorlage:Literatur
  3. "Gas phase decomposition by the Lindemann mechanism" by S. L. Cole and J. W. Wilder. SIAM Journal on Applied Mathematics, Vol. 51, No. 6 (Dec., 1991), S. 1489–1497.
  4. 4,0 4,1 Vorlage:Literatur
  5. 5,0 5,1 5,2 5,3 5,4 Vorlage:Literatur
  6. 6,0 6,1 Atkins P. and de Paula J., Physical Chemistry (8th ed., W.H. Freeman 2006) S. 820-1, ISBN 0-7167-8759-8.
  7. Steinfeld J.I., Francisco J.S. and Hase W.L. Chemical Kinetics and Dynamics (2nd ed., Prentice-Hall 1999), S. 335, ISBN 0-13-737123-3.