Klassisches Runge-Kutta-Verfahren

Aus testwiki
Zur Navigation springen Zur Suche springen

Das klassische Runge-Kutta-Verfahren (nach Carl Runge und Wilhelm Kutta) ist ein spezielles explizites 4-stufiges Runge-Kutta-Verfahren zur numerischen Lösung von Anfangswertproblemen (Gewöhnliche Differentialgleichungen). Eine abkürzende Bezeichnung dieses Verfahrens lautet RK4. Runge hat als erster (1895) ein mehrstufiges Verfahren angegeben und Kutta die allgemeine Form expliziter s-stufiger Verfahren.

Das klassische Runge-Kutta-Verfahren verwendet – wie die weitaus meisten numerischen Lösungsverfahren für Differentialgleichungen – den Ansatz, Ableitungen (Differentialquotienten) durch Differenzenquotienten zu approximieren. Die dabei bei nichtlinearen Funktionen notwendigerweise auftretenden Fehler (es werden sämtliche höheren Glieder der Taylor-Entwicklung vernachlässigt) können durch geeignete Kombinationen verschiedener Differenzquotienten reduziert werden. Das klassische Runge-Kutta-Verfahren ist eine solche Kombination, die Diskretisierungsfehler bis zur dritten Ableitung kompensiert.

Details

Das klassische Runge-Kutta-Verfahren mittelt in jedem Schritt vier Hilfssteigungen (rot)

Sei

y(t)=f(t,y(t)),y(t0)=y0,y:d

ein Anfangsproblem 1. Ordnung.

Mit der Schrittweite h besitzt das klassische Runge-Kutta-Verfahren zur Berechnung der Näherung ui+1y(ti+1) die Verfahrensfunktion

Φ(ti,ui,h,f)=16(k1+2k2+2k3+k4)

mit

k1=f(ti,ui),k2=f(ti+h2,ui+h2k1),k3=f(ti+h2,ui+h2k2),k4=f(ti+h,ui+hk3).

Die Rekursionsgleichung zur Berechnung der Näherung lautet dann

ui+1=ui+hΦ(ti,ui,h,f)=ui+h16(k1+2k2+2k3+k4),i=0,1,

Das Verfahren benötigt in jedem Schritt der Rekursion vier Auswertungen der Funktion f. Für mindestens viermal stetig differenzierbares f zeigt eine Taylor-Entwicklung nach der Schrittweite h, dass es sich bei dem klassischen Runge-Kutta-Verfahren um ein Verfahren mit Konsistenzordnung 4 handelt.

Die charakteristischen Koeffizienten des Verfahrens können in einem Butcher-Tableau zusammengefasst werden zu:

01/21/21/201/210011/61/31/31/6

Literatur

  • Ernst Hairer, Nørsett, Syvert P., Gerhard Wanner: Solving Ordinary Differential Equations. Band 1: Nonstiff Problems. 2. revised edition. Springer Verlag, Berlin u. a. 1993, ISBN 3-540-56670-8 (Springer series in computational mathematics 8), (Auch Nachdruck: ebenda 2008, ISBN 978-3-642-05163-0).
  • Peter Deuflhard, Folkmar Bornemann: Numerische Mathematik. Band 2: Gewöhnliche Differentialgleichungen. 2. vollständige überarbeitete und erweiterte Auflage. de Gruyter, Berlin 2002, ISBN 3-11-017181-3.

fa:‫روشهای رونگه−کوتا uk:Метод Рунге-Кутта