Inklusionsabbildung

Aus testwiki
Zur Navigation springen Zur Suche springen
Zwei Beispiele für eine Inklusion. Bsp b) zeigt eine echte Inklusion.

Eine Inklusionsabbildung (kurz auch Inklusion), natürliche Einbettung oder kanonische Einbettung ist eine mathematische Funktion, die eine Teil- in ihre Grundmenge einbettet.

Definition

Für Mengen A und B mit AB ist die Inklusionsabbildung i:AB durch die Abbildungsvorschrift

i(x)=x

gegeben. Manchmal wird das spezielle Pfeilsymbol zur Kennzeichnung benutzt und man schreibt dann i:AB.

Man spricht von einer echten Inklusion, falls A eine echte Teilmenge von B ist, das heißt, wenn es Elemente in BA gibt.

Im Fall mathematischer Strukturen ist die so definierte Abbildung einer Unterstruktur strukturtreu, d. h. ein Monomorphismus.

Eigenschaften

  • Jede Inklusionsabbildung ist injektiv. Eine echte Inklusion ist nicht surjektiv.
  • Ist A=B, so ist die Inklusion die Identitätsabbildung.
  • Eine beliebige Funktion f:AB lässt sich bezüglich der Verkettung von Funktionen zerlegen als f=hg, wobei g surjektiv und h injektiv ist: Sei C=imfB die Bildmenge von f und g:AC die Funktion, die auf A mit f übereinstimmt, also g(x)=f(x). Für h:CB nimmt man die Inklusionsabbildung.
  • Ist f:AB eine beliebige Funktion und X eine Teilmenge der Definitionsmenge A, dann versteht man unter der Einschränkung f|X von f auf X diejenige Funktion g:XB, die auf X mit f übereinstimmt. Mit Hilfe der Inklusion i:XA lässt sich die Einschränkung kurz schreiben als
f|X=fi.
  • Umgekehrt lässt sich jede Inklusionsabbildung i:AB als Einschränkung einer geeigneten identischen Abbildung auffassen: i=(idB)|A

Vorlage:Wiktionary