Homogener Raum

Aus testwiki
Zur Navigation springen Zur Suche springen

Ein homogener Raum (seltener Kleinscher Raum oder Kleinsche Geometrie nach Felix Klein) ist in der Mathematik ein Raum mit einer transitiven Gruppenwirkung. Die entsprechende Gruppe wird Bewegungsgruppe genannt.

Anschaulich bedeutet diese Homogenität, dass der Raum „in jedem Punkt gleich aussieht“. Beispielsweise sind zusammenhängende differenzierbare Mannigfaltigkeiten homogen, denn zu je zwei Punkten x,y gibt es einen Diffeomorphismus, der x auf y abbildet. Eine wichtige Klasse der homogenen Räume sind die Riemannschen homogenen Räume.

Definition

Sei M eine Menge, auf der die Gruppe G transitiv operiert. Das heißt, es gibt eine Abbildung

G×MM
(g,x)gx

mit folgenden Eigenschaften:

  • Für alle g,hG und alle xM gilt
(gh)x=g(hx).
  • Für alle xM gilt:
ex=x,
wobei eG das neutrale Element ist.
  • Für alle x,yM gibt es ein gG mit
y=gx.

Das Tupel (M,G) heißt dann homogener Raum und G nennt man die Bewegungsgruppe des homogenen Raums.[1]

Beispiele

Oft hat die zugrundeliegende Menge des homogenen Raums eine zusätzliche Struktur, etwa im Rahmen der mathematischen Teilgebiete Gruppentheorie, Topologie oder Riemannschen Differentialgeometrie.

Nebenklassenraum

Ein Beispiel eines homogenen Raums ist die Menge G/H aller Linksnebenklassen xH einer Gruppe G mit einer Untergruppe HG. Die Gruppe G operiert durch

g(xH)=(gx)H

auf G/H, wodurch (G/H,G) zu einem homogenen Raum wird.[1]

Riemannscher homogener Raum

Vorlage:Hauptartikel

Oft sind Riemannsche homogene Räume gemeint, wenn von homogenen Räumen die Rede ist. Hier gibt es zu je zwei Punkten x,y eine Isometrie, die x auf y abbildet. Riemannsche homogene Räume sind eine wichtige Klasse von Beispielen in der Riemannschen Geometrie. Ihre Krümmung kann oft mit algebraischen Methoden berechnet werden.

Eigenschaften

Falls die transitiv wirkende Gruppe G endlich ist, gilt für die Mächtigkeit der Menge M

|M|=|G||Gx|,

wobei Gx den Stabilisator eines (beliebigen) Elements xM bezeichnet.

Siehe auch

Literatur

  • Kai Köhler: Differentialgeometrie und homogene Räume. S. 151 ff., Springer Spektrum, Wiesbaden 2014, ISBN 978-3-8348-1569-9 (Vorlage:Google Buch).
  • Jeff Cheeger, David G. Ebin: Comparison theorems in Riemannian geometry. North-Holland Mathematical Library, Vol. 9. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York 1975.

Einzelnachweise