Fermatscher Polygonalzahlensatz
Der fermatsche Polygonalzahlensatz ist ein mathematischer Satz aus der Zahlentheorie. Er besagt, dass jede natürliche Zahl als Summe von höchstens n-Eckszahlen darstellbar ist. Ein bekannter Spezialfall ist der Vier-Quadrate-Satz, dem zufolge jede Zahl als Summe von vier Quadratzahlen geschrieben werden kann. Ein Beispiel:
Der fermatsche Polygonalzahlensatz ist nach Pierre de Fermat benannt, von dem folgendes Zitat stammt: Vorlage:Zitat Ein solches Buch hat Fermat jedoch nie veröffentlicht. Joseph Louis Lagrange bewies 1770 den Spezialfall des Vier-Quadrate-Satzes[1] und Carl Friedrich Gauß 1796 (unveröffentlicht, er gab aber Beweise für den Fall der Quadrate und Kuben in seinen Disquisitiones arithmeticae) und Legendre (1798) den Spezialfall für Dreieckszahlen.[2] Der Beweis des vollständigen Satzes gelang jedoch erst Augustin Louis Cauchy im Jahr 1815.[3] Der Beweis von Cauchy galt damals als Sensation und machte ihn berühmt.[4]
Beweisstruktur
Für den Beweis des Fermatschen Polygonalzahlensatzes werden zunächst die Beweise des Dreieckszahlensatzes sowie des Vier-Quadrate-Satzes vorausgesetzt. Für wird nun das Lemma von Cauchy bewiesen, welches besagt, dass für mit und existieren mit folgenden Eigenschaften:
Mithilfe dieses Satzes kann nun der Fermatsche Polygonalzahlensatz bewiesen werden, indem Bedingungen aufgestellt werden, unter denen die Voraussetzungen des Cauchyschen Lemmas gelten.[5]
Weblinks
Einzelnachweise
- ↑ Joseph Louis Lagrange: Vorlage:Webarchiv In: Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres, 1770. Berlin 1772, S. 123–133.
- ↑ Am 10. Juli 1796 schrieb Gauß in sein Tagebuch: „EYPHKA num = Δ + Δ + Δ“. Ein Beweis findet sich in Hermann Maser (Hrsg.): Carl Friedrich Gauss’ Untersuchungen über Höhere Arithmetik. Berlin: Springer, 1889, S. 333–334, Art. 293.
- ↑ Augustin Louis Cauchy: Démonstration du théorème général de Fermat sur les nombres polygones. In: Mémoires de la classe des sciences mathématiques et physiques de l’Institut de France 14 (1813–1815), S. 177–220.
- ↑ Bruno Belhoste: Augustin-Louis Cauchy. A Biography. New York: Springer, 1991, S. 46.
- ↑ Vorlage:Literatur