Entropische Gravitation

Aus testwiki
Zur Navigation springen Zur Suche springen
Herleitung der entropischen Gravitation aus den mikroskopischen Theorien

Entropische Gravitation ist eine physikalische Theorie, die die Gravitation als entropische Kraft beschreibt. Das bedeutet, dass sie nicht als fundamentale Wechselwirkung verstanden wird, die über Austauschteilchen wirkt. Vielmehr versucht ein masse-enthaltender Raumbereich nach dem Zweiten Hauptsatz der Thermodynamik einen Zustand höherer Entropie zu erreichen, was zu einer entropischen Kraft F=TS führt. Die Theorie hat ihre Wurzeln in der Stringtheorie, der Thermodynamik schwarzer Löcher und der Theorie der Quanteninformation.

Die Theorie stimmt über viele Größenordnungen mit den makroskopischen Beobachtungen von Newtons Gravitation und von Albert Einsteins Allgemeiner Relativitätstheorie überein, insbesondere der von letzterer beschriebenen Raumzeitkrümmung. Sie ist auf kleinen Längenskalen Quantenfluktuationen unterworfen, was dazu führt, dass die Gravitation in Bereichen verschwindend kleiner Gravitationsbeschleunigung (kleiner als ein Schwellenwert von ungefähr 1,21010m/s2 [1]) nicht mit 1/r2 abnimmt, sondern mit 1/r (linear-invers statt quadratisch-invers). Sie ist daher eine der möglichen Erklärungen der Modifizierten Newtonschen Dynamik (MOND) und kann ohne Dunkle Materie erklären, warum die Rotationskurve von Galaxien von dem Profil abweicht, das durch die sichtbare Materie erwartet wird.

Ein Postulat der entropischen Gravitation ist somit, dass das, was als nicht beobachtbare Dunkle Materie interpretiert wurde, vielmehr ein Resultat von Quanteneffekten ist, also eine positive Dunkle Energie, die die Nullpunktsenergie der Raumzeit über die ihres Grundzustands verschiebt. Die Beiträge der Dunklen Energie zur Entropie wachsen proportional zum Volumen an, während im Anti-de-Sitter-Raum ein Flächengesetz erwartet wird. Es ist eine der Aussagen der Theorie, dass erstere Beiträge gerade am kosmologischen Horizont stärker werden als letztere.[2]

Die Theorie wird unter Physikern kontrovers diskutiert und hat zu zahlreichen Forschungsideen und Experimenten angeregt, die ihre Gültigkeit testen sollen.

Geschichtliche Einordnung

Erik Verlinde

Die thermodynamische Beschreibung der Gravitation geht auf die Forschung von Jacob Bekenstein und Stephen Hawking über die Thermodynamik schwarzer Löcher Mitte der 1970er Jahre zurück (siehe auch Bekenstein-Hawking-Entropie). Deren Arbeiten stellen eine grundlegende Verbindung zwischen Gravitation und Thermodynamik her. Theodore Jacobson zeigte 1995, dass Einsteins Feldgleichungen, die die relativistische Gravitation beschreiben, durch eine Verbindung allgemeiner thermodynamischer Betrachtungen mit dem Äquivalenzprinzip hergeleitet werden können.[3] In den späten 1990er Jahren wurde insbesondere von Gerardus ’t Hooft und Leonard Susskind das Holographische Prinzip entwickelt.[4][5][6][7] In der Folgezeit begannen andere Physiker, wie zum Beispiel Thanu Padmanabhan, die Verbindung zwischen Gravitation und Entropie zu untersuchen.[8][9]

Erik Verlindes Theorie

Im Jahr 2009 veröffentlichte Erik Verlinde das konzeptuelle Modell, das die Gravitation als entropische Kraft beschreibt.[10][11] Er argumentiert, ähnlich wie vorher Jacobson, dass Gravitation eine Konsequenz aus der „Information ist, die mit den Positionen materieller Körper assoziiert ist.“ Verlindes Modell verbindet den thermodynamischen Zugang zur Gravitation mit Gerard 't Hoofts holographischem Prinzip. Es impliziert, dass Gravitation keine Fundamentale Wechselwirkung ist, sondern ein emergentes Phänomen, das vom statistischen Verhalten mikroskopischer Freiheitsgrade hervorgeht. So wie der Ereignishorizont eines schwarzen Lochs die inneren Freiheitsgrade von den makroskopisch betrachteten Größen trennt, wird um eine Masse ein holographischer Schirm gedacht, der die inneren Freiheitsgrade von den makroskopisch beobachtbaren Raumzeit-Koordinaten trennt. Die Arbeit rief eine Menge unterschiedlicher Antworten von der wissenschaftlichen Öffentlichkeit hervor. Andrew Strominger, ein Stringtheoretiker an der Harvard University sagte „Some people have said it can’t be right, others that it’s right and we already knew it — that it’s right and profound, right and trivial.“[12]

Im Juli 2011 präsentierte Verlinde weitere Ideen auf der Strings 2011 Konferenz in Uppsala, unter anderem einen Vergleich mit den Theorien für Dunkle Materie und Dunkle Energie.[13]

Verlindes Artikel rief ein großes Echo in den Medien hervor,[14] und führte zu unmittelbaren Folgearbeiten in benachbarten Forschungsgebieten: in der Kosmologie,[15][16] in der Theorie der Dunklen Energie, in den Betrachtungen über die Beschleunigung der Expansion des Universums[17][18] und der kosmologischen Inflation[19] und in der Schleifenquantengravitation.[20] Auch wurde ein spezielles mikroskopisches Modell vorgeschlagen, das tatsächlich dazu führt, dass auf größeren Skalen entropische Gravitation hervorgeht.[21]

Herleitung des Gravitationsgesetzes

Verlindes Herleitung des Newtonschen Gravitationsgesetzes folgt zunächst einem Gedankenexperiment, das Bekenstein für ein Probeteilchen in der Nähe des Horizonts eines schwarzen Lochs verwendet hat.[22][2] Allerdings verwendet Verlinde diese Argumentation im flachen Raum. Ein holographischer Schirm trennt zwei Regionen: in der einen betrachtet man makroskopische Eigenschaften, etwa die Positionen von Teilchen, auf der anderen nur mikroskopische Freiheitsgrade. Ein Teilchen der Masse m befinde sich innerhalb eines Abstands seiner Compton-Wellenlänge Δx=/mc vom holographischen Schirm. Das holographische Prinzip besagt, dass sich die Entropie des Schirms um ΔS=2πkB ändert, wenn das Teilchen in den Schirm fällt und seine Information sich mit den mikroskopischen Freiheitsgraden verbindet. Dabei sind das reduzierte Plancksche Wirkungsquantum, c die Lichtgeschwindigkeit und kB die Boltzmann-Konstante. Daraus ergibt sich[2]

ΔS=2πkBmcΔx .

Die Entropische Kraft wird anhand eines Teilchens an einer semipermeablen Membran erklärt: wenn das Teilchen aus Entropiegründen eine Seite der Membran bevorzugt und diese eine Temperatur T hat, so wird das Teilchen eine effektive Kraft F erfahren, die FΔx=TΔS genügt. Mit obiger Gleichung erhält man:[2]

F = TΔSΔx = 2πkBmcT .

Verlinde merkt hier an, dass ein linearer Zusammenhang zwischen Temperatur und Beschleunigung auch aus dem Unruh-Effekt T=a/(2πckB) bekannt ist, wobei er betont, dass dabei die Temperatur T eine Beschleunigung a verursacht, und nicht wie oft verstanden die Temperatur durch die Beschleunigung verursacht sei.

Fasst man nun den holographischen Schirm aus dem obigen Gedankenexperiment als einen Teil der Oberfläche einer Kugel mit Radius r auf und nimmt an, dass jedes Bit an holographischer Information eine Fläche P2 benötigt, wobei P=G/c3 die Planck-Länge und G die Gravitationskonstante sind, so trägt die gesamte Kugeloberfläche A=4πr2 eine Anzahl von

N = AP2 = Ac3G = 4πr2c3G

Bits an Information. Nach dem Gleichverteilungssatz tragen diese N Freiheitsgrade bei der Temperatur T eine Energie

E = 12NkBT ,

was nach der Äquivalenz von Masse und Energie einer Masse M mit E=Mc2 entspricht. Nach T aufgelöst ergibt sich

T = 2kBNE = 2kB4πr2c3GMc2 = GM2πckBr2 .

In die obige Formel für die Kraft eingesetzt erhält man

F = 2πkBmcGM2πckBr2 = GMmr2 ,

also das Newtonsche Gravitationsgesetz.

Kritik und experimentelle Tests

Die Theorie der entropischen Gravitation, wie sie von Verlinde im ursprünglichen Artikel vorgeschlagen wurde, reproduziert die Einsteinschen Feldgleichungen und in der Newtonschen Näherung das 1/r-Potential für die Gravitationskraft. Da die Ergebnisse nur in Bereichen extrem kleiner Gravitationsfelder von der Newtonschen Gravitation abweichen, erscheinen Tests in Laboratorien auf der Erde nicht durchführbar. Laboratorien in Raumschiffen, z. B. an Lagrange-Punkten im Sonnensystem wären sehr teuer und aufwendig.[1]

Dennoch (oder gerade deswegen) wurde entropische Gravitation in ihrer jetzigen Form auf formaler Basis hinterfragt:

  • Der Mathematik-Professor Matt Visser von der Victoria University of Wellington (Neuseeland) zeigte, dass der Versuch einer Modellierung konservativer Kräfte im allgemeinen Newtonschen Fall (d. h. mit beliebigen Potentialen und einer unbegrenzten Anzahl diskreter Massen) zu unphysikalischen Anforderungen an die nötige Entropie und zu einer unnatürlich hohen Anzahl von Wärmebädern verschiedenen Temperaturen führt. Visser schließt daraus:

Vorlage:Zitat

  • Was die Herleitung der Einsteinschen Feldgleichungen aus der Perspektive der entropischen Gravitation angeht, zeigte Tower Wang,[23] dass die Forderungen der Erhaltung des Energie-Impuls-Tensors, der kosmischen Homogenität und der Isotropie die große Anzahl möglicher Modifikationen der entropischen Gravitation ernsthaft einschränken, obwohl einige dieser Modifikationen dazu verwendet wurden, die entropische Gravitation auf jenseits eines einfachen Models der Einsteingleichungen zu verallgemeinern. Wang stellt fest:

Vorlage:Zitat

  • Ein wesentlicher Test der Theorie sind astronomische Beobachtungen. Eine Forschungsgruppe an der Sternwarte Leiden, die den Gravitationslinseneffekt anhand von über 33.000 Galaxien beobachtet, fanden heraus, dass deren Gravitationsfelder mit Verlindes Theorie übereinstimmen.[24][25][26] Mit konventioneller Gravitationstheorie konnten die dortigen Felder und die gemessenen galaktischen Rotationskurven nur mit einer besonderen Verteilung von Dunkler Materie erklärt werden.
  • Ein weiterer Kritikpunkt an der entropischen Gravitation baut darauf auf, dass entropische Prozesse eigentlich Quantenkohärenz brechen müssten. Experimente mit Neutronen bei ultratiefen Temperaturen im Gravitationsfeld der Erde stellen jedoch fest, dass die Neutronen auf genau den diskreten Niveaus liegen, die von der Schrödingergleichung des konventionellen Gravitationspotentials ohne dekohärente Faktoren vorhergesagt werden. Archil Kobakhidze argumentiert daher, dass dies gegen die Richtigkeit der entropischen Gravitation spricht.[28][29][30] Luboš Motl erläutert in seinem Blog einige von Kobakhidzes Kritikpunkten.[31][32]

Literatur

Einzelnachweise