Banachscher Abbildungssatz
Der Banachsche Abbildungssatz ist ein nach dem polnischen Mathematiker Stefan Banach benannter mathematischer Lehrsatz aus dem Gebiet der Mengenlehre.[1] Der Satz behandelt eine grundlegende Eigenschaft von Abbildungen. Er ist eng mit dem Cantor-Bernstein-Schröder-Theorem verknüpft.
Formulierung des Satzes
Der Satz lässt sich wie folgt formulieren:[2]
- Gegeben seien Mengen und und dazu Abbildungen
- und .
- Dabei sei injektiv.
- Dann existieren Mengen mit
- und
- sowie
- und
- derart, dass gilt:
- und
Verschärfung
Es lässt sich mit Hilfe des Fixpunktsatzes von Tarski und Knaster zeigen,[3] dass die Behauptung des Satzes immer noch gilt, wenn die Injektivitätsbedingung für die Abbildung fallen gelassen wird.
Der Banachsche Abbildungssatz (verschärfte Version) lautet demnach folgendermaßen:
- Gegeben seien Mengen und und dazu Abbildungen
- und .
- Dann existieren Mengen mit
- und
- sowie
- und
- derart, dass gilt:
- und
Beweis (Verschärfung)
Betrachte die Abbildung mit .
Da monoton ist, besitzt nach dem Fixpunktsatz von Tarski und Knaster einen Fixpunkt . Es gilt also beziehungsweise äquivalent hierzu
- .
Wir setzen nun , und .
Hiermit erhalten wir wie gewünscht und .
Folgerung
Aus dem Banachschen Abbildungssatz folgt unmittelbar das Cantor-Bernstein-Schröder-Theorem.[4][5][6]