Aharonov-Bohm-Effekt

Aus testwiki
Zur Navigation springen Zur Suche springen

Der Aharonov-Bohm-Effekt ist ein Phänomen in der Quantenmechanik, bei dem geladene Teilchen von einem elektromagnetischen Feld beeinflusst werden, obwohl sie sich ausschließlich im feldfreien Raum bewegen. Zum Beispiel beeinflusst ein Magnetfeld B die Interferenz von Elektronenstrahlen auch dann, wenn diese sich nicht im klassisch zu erwartenden Einflussbereich von B befinden. Hauptursache des Effekts ist, dass die Beeinflussung durch das magnetische Vektorpotential erfolgt und nicht durch das Magnetfeld selbst.

Der Aharonov-Bohm-Effekt wurde vom Magazin New Scientist als eines der „Sieben Wunder in der Quantenwelt“ ausgewählt.[1]

Der Effekt wurde nach David Bohm und Yakir Aharonov benannt, die 1959 dazu eine Arbeit veröffentlichten.[2][3] Werner Ehrenberg und Raymond E. Siday konnten den Effekt jedoch bereits 1949 voraussagen.[4] Offenbar hat aber Walter Franz den Effekt bereits 1939 – also 20 Jahre vor Aharonov und Bohm – in einem Seminar der Physikalischen Gesellschaft, Gauverein Ostland in Danzig vorgestellt.[5]

Experiment

Schematische Darstellung des Experiments. Ein von links kommender Elektronen­strahl passiert die Schlitze S1 und S2 in der Barriere X, wodurch sich auf dem Beobachtungs­schirm ein Interferenz­muster bildet (Doppelspalt­experiment). Die Wege e1 und e2 führen um den Zylinder W herum, und das Magnet­feld B besteht nur im Inneren des Zylinders. Trotzdem ändert sich das Interferenz­muster, je nachdem ob das Magnet­feld ein- oder ausgeschaltet ist.

Im Experiment laufen geladene Teilchen (Elektronen) auf verschiedenen Seiten an einem Zylinder vorbei, in dem ein Magnetfeld B herrscht.[6] Der Zylinder ist von einer Wand umgeben, die von den Teilchen nicht durchdrungen werden kann; außerhalb ist das Magnetfeld Null. Trotzdem hängt der Ausgang des Experiments davon ab, ob das Magnetfeld ein- oder ausgeschaltet ist, denn das Vektorpotential A ist im ersten Fall auch außerhalb des Zylinders vorhanden. Man stelle sich hierbei ein radial verlaufendes Vektorpotential vor. Dessen Rotation rotA und damit das Magnetfeld ist außerhalb des Zylinders Null, dennoch ist das Vektorpotential selbst nirgends Null.

Die Superposition der Wellenfunktionen hinter dem Zylinder ergibt ein Interferenzmuster,[7] das vom Vektorpotential beeinflusst wird, da die Wellenfunktionen auf Wegen rechts und links des Zylinders eine unterschiedliche Phasenverschiebung erhalten.

Experimente dieser Art wurden Anfang der 1960er Jahre u. a. von Möllenstedt und Robert G. Chambers[8] durchgeführt.

Theorie

Klassisch erfolgt die Beeinflussung eines geladenen Teilchens im Magnetfeld durch die Lorentzkraft des Magnetfeldes, nach der Bewegungsgleichung:[9]

ma=q(v×B+E)

mit

Klassisch ist ein Effekt also nur dort zu erwarten, wo das Magnetfeld B von Null verschieden ist (abgesehen vom elektrischen Feld E, das hier unwesentlich ist).

In der Quantenmechanik dagegen beschreibt man das Verhalten des Teilchens durch den Hamilton-Operator:

H=12m(pqA(r,t))2+qΦ(r,t).

mit

  • dem kanonischen Impulsoperator p=i
  • dem kinetischen Impulsoperator Π=pqA(r,t)
  • dem Vektorpotential A
  • dem Ort r
  • der Zeit t
  • dem skalaren elektrischen Potential Φ, das hier unwesentlich ist.

Vektorpotential A und Magnetfeld B hängen durch den Rotationsoperator zusammen:

B=rotA:=×A

Das Vektorpotential A ist dadurch generell nur bis auf den Gradienten f einer beliebigen skalaren Funktion f bestimmt, da die Rotation eines Gradientenfeldes für zweifach stetig differenzierbare skalare Felder verschwindet (siehe Eichtransformation).

Interpretation

Manchmal wird aus dem Effekt der Schluss gezogen, dass das Vektorpotential in der Quantenmechanik eine fundamentalere Bedeutung habe als das zugehörige Kraftfeld. Das trifft jedoch nicht das Wesentliche: Letztlich ist der magnetische Fluss ΦB entscheidend, der durch ein Kurvenintegral ausgedrückt werden kann:

ΦB(F)=ΓAdr

Der Integrationsweg Γ muss geschlossen sein, was durch den Kreis im Integrationssymbol angedeutet wird, darf sich aber außerhalb des Bereiches mit B0 befinden.

Nach dem Satz von Stokes

ΓAdr=F(rotA)nd2a

mit

  • dem Normalenvektor n auf der Fläche
  • dem zweidimensionalen Flächenelement d2a.

ist das Linienintegral über die geschlossene Kurve Γ identisch mit dem Fluss der magnetischen Flussdichte B durch die eingeschlossene Fläche F:

ΓAdr=FBnd2a

Insbesondere zeigt der Satz von Stokes, weswegen die gewählte Eichung des Vektorpotentials irrelevant ist, da das Kurvenintegral über A als Flächenintegral über rotA geschrieben werden kann und die Rotation des zur Eichung verwendeten Gradientenfeldes verschwindet.

Man kann den Effekt als Folge der nichttrivialen Topologie des Eichfeldes interpretieren:[10] Wegen des nicht einfach zusammenhängenden Raumes (der Zylinderinnenraum ist „ein Loch im Raum“) verschwinden auch die Wegintegrale über geschlossene Kurven nicht (notwendigerweise).

Literatur

Fachartikel

Fachbücher

Einzelnachweise

  1. Vorlage:Internetquelle
  2. Vorlage:Literatur
  3. Vorlage:Literatur
  4. Vorlage:Literatur
  5. Vorlage:Literatur
  6. Typische Versuchsanordnung
  7. Vorlage:Webarchiv (pdf; 26 kB)
  8. Chambers Shift of an Electron Interference Pattern by Enclosed Magnetic Flux, Physical Review Letters, Band 5 1960, S. 3–5
  9. Hier wird das SI-System verwendet; im CGS-System müsste durchgehend qA und qB durch qA/c und qB/c ersetzt werden.
  10. Vorlage:Internetquelle