Fundamentalpolygon

Aus testwiki
Version vom 6. Januar 2025, 10:22 Uhr von imported>Bithisarea (growthexperiments-addlink-summary-summary:2|0|0)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

In der Mathematik kann jede im topologischen Sinn geschlossene Fläche erzeugt werden, indem man die Seiten eines Polygons mit gerader Seitenanzahl paarweise identifiziert. Dieses Polygon nennt man Fundamentalpolygon.

Fundamentalpolygon der Sphäre: aa−1
Fundamentalpolygon der Projektiven Ebene: aa
Fundamentalpolygon des Torus: aba−1b−1
Fundamentalpolygon der Kleinschen Flasche: aba−1b

Diese Polygone kann man durch eine Zeichenkette beschreiben, die jeder Seite ein Symbol zuordnet. Seiten, die miteinander identifiziert werden erhalten dabei das gleiche Symbol. Ein zusätzlicher Exponent 1 oder −1 gibt die Orientierung der Seite an.

Kanonische Form für kompakte Flächen (ohne Rand)

Gemäß dem Klassifikationssatz kann man Flächen in drei Äquivalenzklassen einteilen. Jeder dieser Klassen lässt sich eine kanonische Form der Fundamentalpolygone zuordnen:

  • einer Sphäre
    aa1
  • einer orientierbaren Fläche vom Geschlecht n
    a1b1a11b11a2b2a21b21anbnan1bn1
  • einer nichtorientierbaren Fläche vom Geschlecht n
    a1a1a2a2anan

Kanonische Form für kompakte Flächen mit Rand

Flächen mit Rand unterscheiden sich von denen ohne dadurch, dass sie zusätzlich eine bestimmte Anzahl von Randkomponenten haben. Die kanonische Form erhält man, indem man die Fundamentalpolygone der unberandeten Flächen um eine entsprechende Zahl von Randkomponenten erweitert:

  • eine Sphäre mit k Randkomponenten B1,,Bk
    aa1c1B1c11ckBkck1
  • eine orientierbare Fläche vom Geschlecht n mit k Randkomponenten B1,,Bk
    a1b1a11b11anbnan1bn1c1B1c11ckBkck1
  • eine nichtorientierbare Fläche vom Geschlecht n mit k Randkomponenten B1,,Bk
    a1a1ananc1B1c11ckBkck1

Literatur

  • Hershel M. Farkas and Irwin Kra: Riemann Surfaces. Springer, New York 1980, ISBN 0-387-90465-4.
  • Jurgen Jost: Compact Riemann Surfaces. Springer, New York 2002, ISBN 3-540-43299-X.
  • William S. Massey: Algebraic Topology: An Introduction. 1. Auflage. Springer, Berlin 1967, ISBN 3540902716

Vorlage:Commons