Damköhler-Zahl

Aus testwiki
Version vom 29. Juli 2019, 09:47 Uhr von imported>AsphodelusW (tiefstellungen von indices)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Vorlage:Belege fehlen Die Damköhler-Zahlen (Da) (entwickelt von Gerhard Damköhler, 1908–1944) sind dimensionslose Kennzahlen der chemischen Reaktionstechnik. Bekannt sind vier verschiedene Damköhler-Zahlen (DaI, DaII, DaIII, DaIV), die als Damköhler-Zahl n-ter Ordnung bekannt sind, sowie eine turbulente Damköhler-Zahl (Dat).

Damköhler-Zahl erster Ordnung

Die Damköhler-Zahl erster Ordnung DaI beschreibt das Verhältnis der Geschwindigkeitskonstanten der Reaktion zur Geschwindigkeitskonstanten des konvektiven Stofftransports:

DaI=kreaktkkonvekt=kτc0n1=kLc0n1w,

mit

Für die Beschreibung diskontinuierlicher Reaktoren ersetzt man die Verweilzeit τ durch die Reaktionszeit tr. Somit erhält man in deutlich übersichtlicherer Darstellung die dimensionslose Massenbilanz des idealen Rührkesselreaktors.

Damköhler-Zahl zweiter Ordnung

Die Damköhler-Zahl zweiter Ordnung DaII findet sich bei der Beschreibung innerer Stofftransportvorgänge (Porendiffusion) an Grenzflächen, z. B. an Katalysatorkugeln. Sie ist definiert als Verhältnis der Reaktionsgeschwindigkeit zur Diffusionsgeschwindigkeit:

DaII=kL2cn1D=kcn1kLa

mit

DaII kann als Verhältnis der Reaktionsgeschwindigkeit zu Oberflächenbedingungen zu der Diffusionsgeschwindigkeit durch die äußere Oberfläche des Katalysatorpellets gesehen werden.

Damköhler-Zahl dritter Ordnung und vierter Ordnung

Die Damköhler-Zahl dritter Ordnung DaIII und die Damköhler-Zahl vierter Ordnung DaIV werden zur Abschätzung von Betriebsbedingungen bei polytroper Betriebsweise von Reaktoren verwendet.

Turbulente Damköhler-Zahl

Die turbulente Damköhler-Zahl Dat (in der Verbrennungsforschung meist nur als Da bezeichnet) beschreibt das Verhältnis zwischen der makroskopischen Zeitskala einer turbulenten Strömung τ0 und der Zeitskala einer chemischen Reaktion τR:

Dat:=τ0τRl0vRvlR

l steht hierbei für die jeweilige Längenskala, wobei als makroskopische Längenskala meist eine integrale Längenskala gewählt wird.[1] Diese dient als Maß für den Durchmesser der energiereichsten (und damit auch in der Regel der größten) Wirbel in der Strömung. Deren Umlaufgeschwindigkeit ist etwa gleich der Standardabweichung v der Strömungsgeschwindigkeit. Als charakteristische Ausbreitungsgeschwindigkeit vR für die chemischen Reaktionen dient in der Verbrennungsforschung meist die laminare Flammengeschwindigkeit sL, also die Geschwindigkeit, mit der die Flammenfront im laminaren Fall propagiert: vR=sL Analog dazu ist es in Bezug auf Verbrennungsprozesse üblich, die Dicke der laminaren Flammenfront lL als Reaktionslängenskala einzusetzen: lR=lL [2]

Anhand der turbulenten Damköhler-Zahl lassen sich Aussagen über die räumliche Struktur und das zeitliche Verhalten des Reaktionsgebiets in einer turbulenten reagierenden Strömung treffen.[3]

Siehe auch

Einzelnachweise