Satz von Kuratowski

Aus testwiki
Version vom 8. Februar 2025, 09:33 Uhr von imported>Biggerj1 (Planarität)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Der Satz von Kuratowski (nach Kazimierz Kuratowski) ist ein Satz aus der Graphentheorie, der wichtige Aussagen zu planaren Graphen macht und die Frage nach der Planarität (Plättbarkeit) eines Graphen beantwortet.

Planarität

Animation: der Petersen-Graph enthält K3,3 als Minor und ist deshalb nicht planar.

Ein Graph wird genau dann als planar (plättbar) bezeichnet, wenn es möglich ist, den Graphen so in die (2 dimensionale) Ebene zu zeichnen, dass sich die Kanten des Graphen nicht schneiden. Die Kanten dürfen sich lediglich in den Knoten des Graphen berühren.

Die folgenden beiden Graphen sind planar, wobei die Planarität von G2 erst deutlich wird, wenn man G2 anders zeichnet.

Abb. 1: Beispielgraphen G1 und G2

Die Graphen K5 und K3,3

Abb. 2: K5
Abb. 3: K3,3

Der Satz von Kuratowski benutzt zwei spezielle Graphen: K5 und K3,3. Bei K5 handelt es sich um den vollständigen Graphen mit 5 Knoten (siehe Abb. 2), bei K3,3 um einen vollständig bipartiten Graphen, der in zwei je dreielementige Teilmengen aufgeteilt ist (siehe Abb. 3). Beide Graphen sind nicht planar. Sie sind sogar die kleinsten nicht-planaren Graphen überhaupt, was direkt aus dem Satz von Kuratowski folgt.

Der Satz von Kuratowski

Der Satz von Kuratowski besagt, dass ein Graph genau dann planar ist, wenn er keinen Teilgraphen besitzt, der ein Unterteilungsgraph des K5 oder des K3,3 ist. Einen Unterteilungsgraphen erhält man, indem man wiederholt eine Kante durch ein inzidentes Kantenpaar ersetzt. Alternativ kann man formulieren, dass ein Graph genau dann planar ist, wenn er weder den K5 noch den K3,3 als topologischen Minor enthält.

Siehe auch

Literatur

Vorlage:Normdaten