Maurer-Cartan-Form: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
imported>UdalricusS KKeine Bearbeitungszusammenfassung |
(kein Unterschied)
|
Aktuelle Version vom 2. Juli 2021, 15:33 Uhr
Die Maurer-Cartan-Form ist eine in Differentialgeometrie und Mathematischer Physik häufig verwendete Lie-Algebra-wertige Differentialform auf Lie-Gruppen. Sie ist benannt nach dem deutschen Mathematiker und Hochschullehrer Ludwig Maurer und dem französischen Mathematiker Élie Cartan.
Definition
Sei eine Lie-Gruppe, ihre Lie-Algebra. Für induziert die Links-Multiplikation
das Differential
- .
Die Maurer-Cartan-Form ist definiert durch
für .[1]
Maurer-Cartan-Gleichung
Die Maurer-Cartan-Form erfüllt die Gleichung
- .
Hierbei ist der Kommutator Lie-algebra-wertiger Differentialformen durch
und die äußere Ableitung durch
definiert.