Datei:Pendulum phase portrait.svg

Aus testwiki
Zur Navigation springen Zur Suche springen
Originaldatei (SVG-Datei, Basisgröße: 479 × 484 Pixel, Dateigröße: 352 KB)

Diese Datei stammt aus Wikimedia Commons und kann von anderen Projekten verwendet werden. Die Beschreibung von deren Dateibeschreibungsseite wird unten angezeigt.

Beschreibung

Beschreibung
English: Phase portrait of an undamped simple pendulum.

The latest revision of the image was created in python using the source code provided below.

The first revision of the image was plotted using with GNU Octave using gnuplot backend and saved as a standalone LaTeX file. The PDF generated was then converted to SVG using pdf2svg. The octave source file 'pendulumOde.m' is provided below for reference.
Datum
Quelle Eigenes Werk
Urheber Krishnavedala
SVG‑Erstellung
InfoField
 Der SVG-Code ist valide.
 Dieser Plot wurde mit Matplotlib erstellt.
Quelltext
InfoField

Python code

Python source code
from numpy import *
from scipy import *
from scipy.integrate import odeint
from matplotlib.pyplot import *
from mpl_toolkits.axes_grid.axislines import SubplotZero
 
def myFun(u,t=0.,mu=.5):
    x = u[0]
    v = u[1]
    dx = v
    dv = -sin(x)
    return (dx,dv)

if __name__ == "__main__":
    fig = figure(figsize=(5.5,7))
    ax = SubplotZero(fig,211)
    x = linspace(-3*pi,3*pi,100)
    ax.plot(x,-cos(x),'b',lw=1.5)
    fig.add_subplot(ax)
    ax.grid(True,which='major')
    ax.minorticks_on()
    ax.axis('tight')
    ax.axis([-3*pi,3*pi, -1,1])
    ax.set_xticks(arange(-3*pi,3.1*pi,pi))
    ax.set_xticklabels(
        [r'$-3\pi$',r'$-2\pi$',
        r'$-\pi$',r'$0$',r'$\pi$',
        r'$2\pi$',r'$3\pi$'])
    ax.set_xlabel(r'$\theta$')
    ax.set_ylabel(r'$V(\theta)$')
    ax = SubplotZero(fig,212)
    fig.add_subplot(ax)
    t = linspace(0,50,200)
    for m in range(0,60,5):
        u = odeint(myFun,[m/10.,0.],t)
        ax.plot(u[:,0],u[:,1],'b',lw=1.5)
        ax.plot(-u[:,0],u[:,1],'b',lw=1.5)
        u = odeint(myFun,[0,m/10.],t)
        ax.plot(ma.masked_outside(u[:,0],-3*pi,3*pi),
            ma.masked_outside(u[:,1],-3,3),'b',lw=1.5)
        ax.plot(ma.masked_outside(-u[:,0],-3*pi,3*pi),
            ma.masked_outside(u[:,1],-3,3),'b',lw=1.5)
        ax.plot(ma.masked_outside(u[:,0],-3*pi,3*pi),
            ma.masked_outside(-u[:,1],-3,3),'b',lw=1.5)
        ax.plot(ma.masked_outside(-u[:,0],-3*pi,3*pi),
            ma.masked_outside(-u[:,1],-3,3),'b',lw=1.5)
    x = linspace(-3*pi,3*pi,20)
    y = linspace(-3,3,15)
    x,y = meshgrid(x,y)
    X,Y = myFun([x,y])
    M = (hypot(X,Y))
    M[M==0]=1.
    X,Y = X/M, Y/M
    ax.quiver(x,y,ma.masked_outside(X,-3*pi+.1,3*pi-.1),Y,M,pivot='mid',color='r')
    ax.minorticks_on()
    ax.axis('scaled')
    ax.axis([-3*pi,3*pi, -3,3])
    ax.set_yticks(arange(-3,3.1,1.5))
    ax.set_xticks(arange(-3*pi,3.1*pi,pi))
    ax.set_xticklabels(
        [r'$-3\pi$',r'$-2\pi$',
        r'$-\pi$',r'$0$',r'$\pi$',
        r'$2\pi$',r'$3\pi$'])
    ax.set_xlabel(r'$\theta$')
    ax.set_ylabel(r'$\frac{\mathrm{d}\theta}{\mathrm{d}t}$')
    ax.grid(True)
    subplots_adjust(wspace=.1,hspace=-.1)
    fig.show()
    fig.savefig("pendulum.svg", bbox_inches="tight",\
        pad_inches=.15, transparent=False)

Data

Matlab source code
function pendulumOde
% main function to numerically solve the pendulum ODE and plot the phase portrait
  figure;
  subplot(211);
  x = -pi:.1:3*pi;
  h = plot(x,-cos(x),'linewidth',2);
  set(gca,'yminortick','on','xtick',[-pi:pi/2:3*pi],'xticklabel',
    {'$-\\pi$';'$-\\frac{\\pi}{2}$';'$0$';'$\\frac{\\pi}{2}$';'$\\pi$';
    '$\\frac{3}{2}\\pi$';'$2\\pi$';'$\\frac{5}{2}\\pi$';'$3\\pi$'});
  xlim([-pi 3*pi])
  xlabel('$\theta$');
  ylabel('$V(\theta)$');
  grid on;
  subplot(212);
  [x,y] = meshgrid(-pi:.4:3*pi,-3:.2:3);
  u = zeros(size(x));
  v = zeros(size(y));
  for i = 1:numel(x)
    yy = ode_eq(0, [x(i),y(i)]);
    u(i) = yy(1);
    v(i) = yy(2);
    vmod = sqrt(u(i).^2 + v(i).^2);
    u(i) = u(i) / vmod;
    v(i) = v(i) / vmod;
  end
  quiver(x,y,u,v,'r');
  xlabel('$\theta$');
  ylabel('$\frac{\mathrm{d}\theta}{\mathrm{d}t}$');
  xlim([-pi 3*pi])
  ylim([-pi pi])
  grid on;
  set(gca,'yminortick','on','xtick',[-pi:pi/2:3*pi],'xticklabel',
    {'$-\\pi$';'$-\\frac{\\pi}{2}$';'$0$';'$\\frac{\\pi}{2}$';'$\\pi$';
    '$\\frac{3}{2}\\pi$';'$2\\pi$';'$\\frac{5}{2}\\pi$';'$3\\pi$'});
  hold all;
  
  dT = .01;
  T = 40;
  for c = 0:.5:5
    [x,y] = rungeKutta([c;0],dT,T,@ode_eq);
    plot(y(1,:),y(2,:),'b','linewidth',2);
    plot(y(1,:),-y(2,:),'b','linewidth',2);
    [x,y] = rungeKutta([0;c],dT,T,@ode_eq);
    plot(y(1,:),y(2,:),'b','linewidth',2);
    plot(-y(1,:),y(2,:),'b','linewidth',2);
    plot(y(1,:),-y(2,:),'b','linewidth',2);
    plot(-y(1,:),-y(2,:),'b','linewidth',2);
    [x,y] = rungeKutta([c;pi*2],dT,T,@ode_eq);
    plot(y(1,:),y(2,:),'b','linewidth',2);
    plot(y(1,:),-y(2,:),'b','linewidth',2);
    [x,y] = rungeKutta([pi*2;c],dT,T,@ode_eq);
    plot(y(1,:),y(2,:),'b','linewidth',2);
    plot(-y(1,:),y(2,:),'b','linewidth',2);
    plot(y(1,:),-y(2,:),'b','linewidth',2);
    plot(-y(1,:),-y(2,:),'b','linewidth',2);
  end
  print -depslatexstandalone "-S512,512" "pendulum.tex";
end

function dy = ode_eq(x,y)
% function that defines an n-dimensional ODE. 
% In this case, the two linear ODEs of pendulum
  dy = [0;0];
  dy(1) = y(2);
  dy(2) = -sin(y(1));
end

function [x, y] = rungeKutta(y0, dT, T, dyFun, x0)
% A generalized Runge-Kutta algorithm to solve 'n' number of linear ODE
% obtained from an 'n'th degree ODE
  n = length(y0);
  if n > 1 && size(y0,2) == n
    y0 = y0';
  end
  if nargin < 5
    x0 = 0;
  end
  N = round(T/dT);
  x = zeros(1,N);
  y = zeros(n,N);
  x(1) = x0;
  y(:,1) = y0;
  for nn = 1:N-1
    k1 = feval(dyFun, x(nn), y(:,nn));
    k2 = feval(dyFun, x(nn)+.5*dT, y(:,nn)+.5*k1*dT);
    k3 = feval(dyFun, x(nn)+.5*dT, y(:,nn)+.5*k2*dT);
    k4 = feval(dyFun, x(nn)+dT, y(:,nn)+k3*dT);
    y(:,nn+1) = y(:,nn) + (dT/6) * (k1 + 2*k2 + 2*k3 + k4);
    x(nn+1) = x(nn) + dT;
  end
end

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
w:de:Creative Commons
Namensnennung Weitergabe unter gleichen Bedingungen
Dieses Werk darf von dir
  • verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
  • neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
  • Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
  • Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell16:20, 13. Nov. 2017Vorschaubild der Version vom 16:20, 13. Nov. 2017479 × 484 (352 KB)wikimediacommons>Krishnavedalarecompiled image using python code given in the description. No SVG errors

Die folgende Seite verwendet diese Datei: