Datei:Newton-lplane-Mandelbrot-smooth.jpg
Diese Datei stammt aus Wikimedia Commons und kann von anderen Projekten verwendet werden. Die Beschreibung von deren Dateibeschreibungsseite wird unten angezeigt.
|
| BeschreibungNewton-lplane-Mandelbrot-smooth.jpg |
English: Computergraphical study of the critical point 0 of Newton's method for a family of cubic polynomials |
|||
| Datum | ||||
| Quelle | Eigenes Werk | |||
| Urheber | Georg-Johann Lay | |||
| Genehmigung (Weiternutzung dieser Datei) |
|
Beschreibung


in the complex plane. denotes the Newton operator
For in the black part of the plane, the critical point 0 of
does not converge to a zero of
.
This means that the set of start values for which Newton's method does not converge to a zero of
is a set of full measure.
The black set is
Coloring
Note: I added the relevant part of the C-source to document what went on.
- getLambdaColor
- gets the color for one pixel
- Nf
- perform one step of Newton's method, returns the next z als well as the value of the hard coded ƒλ(z)
- cpolar
- transform from cartesian coordinates to polar coordinates
- hsv2rgb
- map HSV to RGB color space
- argd[]
- some values that can be passed via command line to fine trim the coloring function.
The coloring function itself cannot be derived or explained at this point. It is based on trial and error, observation, intuition and experience to get a function that yields appealing results.
Resolution (both arithmetic and graphical) and graphics are taken care of by higher level procedures which do not contribute to the basic understanding.
Color getLambdaColor (double x, double y)
{
cplx z = {0,0};
lambda = (cplx) {x+argd[2], y+argd[3]};
int i;
cplx f;
double eps = 1e-8;
double le = 1./log(eps);
for (i=0; i < argd[1]; i++)
{
double v, s, h, b2;
z = Nf(z, &f);
if (isinf (z.x) || isinf (z.y))
return Cwhite;
if (isinf (f.x) || isinf (f.y))
return Cwhite;
b2 = f.x*f.x + f.y*f.y;
if (isinf(b2)) exit(4);
if (b2 < eps*eps)
{
double b = 0.5*log(b2)*le;
if (isinf(b)) b = 2;
b = i-b;
z = cpolar(z);
h = z.y/2/M_PI-.09;
v = b / argd[4];
s = 0.9-0.7*pow(v, 1.5);
if (v >= 1)
{
double q = 1.-log (b-argd[4])/log(argd[1]-argd[4]);
s = 4*q*(1-q);
if (s > 1) s = 1;
if (s< 0) s = 0;
s = 0.2+0.6*pow(s, 10);
v = 1;
}
return hsv2rgb (h, s, v);
}
}
return Cblack;
}
cplx Nf (cplx z, cplx *f)
{
cplx z2 = cprod (z,z);
*f = csum (z2, lambda);
*f = ccsum (-1, *f);
*f = cprod (*f, z);
*f = cdiff (*f, lambda);
cplx N = ccprod (3., z2);
N = csum (N, lambda);
N = ccsum (-1, N);
cplx Z = cprod (z, z2);
Z = csum (Z, Z);
Z = csum (Z, lambda);
return cquot (Z, N);
}
Kurzbeschreibungen
In dieser Datei abgebildete Objekte
Motiv
Einige Werte ohne einen Wikidata-Eintrag
11. April 2008
14.878.776 Byte
4.800 Pixel
6.000 Pixel
image/jpeg
ca6373286247ee085cecc61db96fab895af121b0
Dateiversionen
Klicke auf einen Zeitpunkt, um diese Version zu laden.
| Version vom | Vorschaubild | Maße | Benutzer | Kommentar | |
|---|---|---|---|---|---|
| aktuell | 00:44, 18. Okt. 2008 | 6.000 × 4.800 (14,19 MB) | wikimediacommons>Georg-Johann | {{Information |Description= |Source= |Date= |Author= |Permission= |other_versions= }} |
Dateiverwendung
Die folgenden 2 Seiten verwenden diese Datei: