Datei:Gaussianprocess gapUncertainty.gif

Aus testwiki
Zur Navigation springen Zur Suche springen
Gaussianprocess_gapUncertainty.gif (400 × 200 Pixel, Dateigröße: 156 KB, MIME-Typ: image/gif, Endlosschleife, 50 Bilder, 5,0 s)

Diese Datei stammt aus Wikimedia Commons und kann von anderen Projekten verwendet werden. Die Beschreibung von deren Dateibeschreibungsseite wird unten angezeigt.

Beschreibung

Beschreibung
English: Gaußprozess-Regression: Unsicherheit der Interpolation einer Lücke, dargestellt durch Zufallsfluktiononen gemäß der a-posteriori-Kovarianzfunktion.
Datum
Quelle Eigenes Werk
Urheber Physikinger
GIF‑Erstellung
InfoField
 Dieser Plot wurde mit Matplotlib erstellt.
Quelltext
InfoField

Python code

# This source code is public domain 
# Author: Christian Schirm

import numpy, scipy.spatial
import matplotlib.pyplot as plt
import imageio

def covMat(x1, x2, covFunc, noise=0):  # Covariance matrix
    cov = covFunc(scipy.spatial.distance_matrix(numpy.atleast_2d(x1).T, numpy.atleast_2d(x2).T))
    if noise: cov += numpy.diag(numpy.ones(len(cov))*noise)
    return cov

numpy.random.seed(107)

covFunc1 = lambda d: 2*numpy.exp(-numpy.abs(numpy.sin(1.55*numpy.pi*d))**1.9/3 - d**2/7.)
covFunc2 = lambda d: 1*numpy.exp( - d**2/6.)
covFunc = lambda d: 1.5*numpy.exp(-numpy.abs(numpy.sin(1.55*numpy.pi*d))**1.9/3 - d**2/10.)

n=60
x = numpy.linspace(0, 10, 300)
y1 = numpy.random.multivariate_normal(x.ravel()*0, covMat(x, x, covFunc1, noise=0.00))
y2 = numpy.random.multivariate_normal(x.ravel()*0, covMat(x, x, covFunc2, noise=0.00))
x_known = numpy.concatenate([x[:n+1], x[-n:]])
y_known = numpy.concatenate([y1[:n+1], y2[-n:]])
x_unknown = x[n:-n+1]

Ckk = covMat(x_known, x_known, covFunc, noise=0.000001)
Cuu = covMat(x_unknown, x_unknown, covFunc, noise=0.00)
CkkInv = numpy.linalg.inv(Ckk)
Cuk = covMat(x_unknown, x_known, covFunc, noise=0.0)
m = 0 #numpy.mean(y)
covPost = Cuu - numpy.dot(numpy.dot(Cuk,CkkInv),Cuk.T)
y_unknown = numpy.dot(numpy.dot(Cuk,CkkInv),y_known)

fig = plt.figure(figsize=(4.0,2))
sigma = numpy.sqrt(numpy.diag(covPost))
plt.plot(x_unknown, y_unknown,  label=u'Prediction')
plt.fill_between(x_unknown.ravel(), y_unknown - sigma, y_unknown + sigma, color = '0.85')
plt.plot(x[:n+1], y1[:n+1],'k-')
plt.plot(x[-n:], y2[-n:],'k-')
plt.vlines([x[n], x[-n]],-3,3,colors='r', linestyles='--', alpha=0.5)
plt.axis([0,10,-3,3])
plt.savefig('Gaussianprocess_gapMean.svg')

fig = plt.figure(figsize=(4.0,2))
for c in 'C1 C4  C2'.split():
    y_random = numpy.random.multivariate_normal(x_unknown.ravel()*0, covPost)
    plt.plot(x_unknown, y_unknown + y_random, c, label=u'Prediction')
sigma = numpy.sqrt(numpy.diag(covPost))
plt.plot(x[:n+1], y1[:n+1],'k-')
plt.plot(x[-n:], y2[-n:],'k-')
plt.vlines([x[n], x[-n]],-3,3,colors='r', linestyles='--', alpha=0.5)
plt.axis([0,10,-3,3])
plt.savefig('Gaussianprocess_gap.svg')

# Uncertainty animation

numpy.random.seed(1)
t = numpy.arange(0, 1, 0.02)
covFunc = lambda d: numpy.exp(-(3*numpy.sin(d*numpy.pi))**2) # Covariance function
chol = numpy.linalg.cholesky(covMat(t, t, covFunc, noise=1E-5))
r = chol.dot(numpy.random.randn(len(t), len(covPost)))
cov = covPost+1E-5*numpy.identity(len(covPost))
rSmooth = numpy.linalg.cholesky(cov).dot(r.T)

images = []
fig = plt.figure(figsize=(4.0,2))
for ti in [0]+list(range(len(t))):
    plt.plot(x_unknown, y_unknown + rSmooth[:,ti], label=u'Prediction',alpha=1)
    #plt.fill_between(x_unknown.ravel(), y_unknown - sigma, y_unknown + sigma, color = '0.85')
    plt.plot(x[:n+1], y1[:n+1],'k-')
    plt.plot(x[-n:], y2[-n:],'k-')
    plt.vlines([x[n], x[-n]],-3,3,colors='r', linestyles='--', alpha=0.5)
    plt.axis([0,10,-3,3])
    plt.xlabel('t')
    #plt.tight_layout()
    fig.canvas.draw()
    s, (width, height) = fig.canvas.print_to_buffer()
    images.append(numpy.fromstring(s, numpy.uint8).reshape((height, width, 4)))
    fig.clf()

# Save GIF animation
fileOut = 'Gaussianprocess_gapUncertainty.gif'
imageio.mimsave(fileOut, images[1:])

# Optimize GIF size
from pygifsicle import optimize
optimize(fileOut, colors=16)

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz CC0 1.0 Verzicht auf das Copyright zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.
Gaussian process regression: uncertainty of interpolated gap shown by random animation according to posterior covariance function

In dieser Datei abgebildete Objekte

Motiv

image/gif

159.918 Byte

200 Pixel

400 Pixel

e0908e47bf343f2c1a72e43651cc14105d2df06b

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell21:37, 8. Sep. 2021Vorschaubild der Version vom 21:37, 8. Sep. 2021400 × 200 (156 KB)wikimediacommons>PhysikingerSmaller file size

Die folgende Seite verwendet diese Datei: