Datei:GaussianProcessDecomposition Uncertainty.gif

Aus testwiki
Zur Navigation springen Zur Suche springen
GaussianProcessDecomposition_Uncertainty.gif (420 × 300 Pixel, Dateigröße: 381 KB, MIME-Typ: image/gif, Endlosschleife, 50 Bilder, 5,0 s)

Diese Datei stammt aus Wikimedia Commons und kann von anderen Projekten verwendet werden. Die Beschreibung von deren Dateibeschreibungsseite wird unten angezeigt.

Beschreibung

Beschreibung
English: Uncertainties and crosscorrelations of decomposed signals shown as animated random fluctuations.
Deutsch: Unsicherheiten und Kreuzkorrelationen der zerlegten Signale, dargestellt als animierte Zufallsfluktuationen.
Datum
Quelle Eigenes Werk
Urheber Christian Schirm
GIF‑Erstellung
InfoField
 Dieser Plot wurde mit Matplotlib erstellt.
Quelltext
InfoField

Python code

# This source code is public domain
# Author: Christian Schirm

import numpy, scipy.spatial
import matplotlib.pyplot as plt
import imageio

numpy.random.seed(50)

# Covariance matrix
def covMat(x1, x2, covFunc, noise=0):
    cov = covFunc(scipy.spatial.distance_matrix(numpy.atleast_2d(x1).T, numpy.atleast_2d(x2).T))
    if noise: cov += numpy.diag(numpy.ones(len(cov))*noise)
    return cov

# Decomposition of e.g. sum of signals into components
def decompose(xIn, yIn, xOut, covFuncIn, covFuncListOut):
    Ckk = covMat(xIn, xIn, covFuncIn, noise=0)
    n = len(covFuncListOut)
    N = len(xOut)
    Cuu = numpy.zeros((n*len(xOut), n*len(xOut)))
    Cuk = numpy.zeros((n*len(xOut), len(xOut)))
    for i,covOut in enumerate(covFuncListOut):
        Cuu[i*N:(i+1)*N, i*N:(i+1)*N] = covMat(xOut, xOut, covOut, noise=0)
        Cuk[i*N:(i+1)*N,:] = covMat(xOut, xIn, covOut, noise=0)
    CkkInv = numpy.linalg.inv(Ckk)
    y = Cuk.dot(CkkInv.dot(yIn))
    sigmaSplit = (Cuu - Cuk.dot(CkkInv.dot(Cuk.T)))
    return y, sigmaSplit

# Covariance function 1: smooth random signal underground
covFunc1 = lambda d: 2.7**2*numpy.exp(-((d/1.)**2))

# Covariance function 2: periodic signal
covFunc2 = lambda d: 2.7**2*numpy.exp(-0.4*numpy.abs((numpy.sin(numpy.pi*d/2.5))))

# Covariance function 3: white gaussian noise
covFunc3 = lambda d: d*0 + 0.8**2*(numpy.abs(d)<0.00001)

# Covariance function of sum
covFuncSum = lambda d: covFunc1(d) + covFunc2(d) + covFunc3(d)

x = numpy.linspace(0, 10, 300)

# Generate random signales
Y = []
for covFunc in covFunc1, covFunc2, covFunc3:
    y = numpy.random.multivariate_normal(x.ravel()*0, covMat(x, x, covFunc))
    Y += [y]

# perform decomposition
YSplit = []
YSigma = []
ySplit, sigmaSplit = decompose(x, Y[0]+Y[1]+Y[2], x, covFuncSum, [covFunc1, covFunc2, covFunc3])
YSplit = ySplit.reshape(3,len(x))

# set prior mean of signals 1 and 2
meanShift = 3
YSplit[0] += meanShift
Y[0] += meanShift
YSplit[1] -= meanShift
Y[1] -= meanShift

# Random gaussian process signals
fig = plt.figure(figsize=(4.2,3.0))
for i,c in (2,1), (0,0), (1,2):
    plt.plot(x, Y[i], color='C'+str(c), label=u'Prediction',alpha=1)
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
plt.savefig('GaussianProcessDecomposition_3RandomSignals.svg')
plt.show()

# Sum of all 3 signals
fig = plt.figure(figsize=(4.2,3.0))
plt.plot(x, (Y[0]+Y[1]+Y[2]), 'r-', label=u'Prediction')
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
plt.savefig('GaussianProcessDecomposition_SumOf3Signals.svg')
plt.show()

# plot figures
# Decomposion of sum into single signals
fig = plt.figure(figsize=(4.2,3.0))
for i,c in (2,1), (0,0), (1,2):
    plt.plot(x, Y[i], '--', color='C'+str(c), label=u'Prediction',alpha=0.4)
    plt.plot(x, YSplit[i], color='C'+str(c), label=u'Prediction',alpha=1)
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
plt.savefig('GaussianProcessDecomposition_DecomposedSignals.svg')
plt.show()

# Uncertainty animation

t = numpy.arange(0, 1, 0.02)
covFunc = lambda d: numpy.exp(-(3*numpy.sin(d*numpy.pi))**2) # Covariance function
chol = numpy.linalg.cholesky(covMat(t, t, covFunc, noise=1E-5))
r = chol.dot(numpy.random.randn(len(t), len(sigmaSplit)))
cov = sigmaSplit+1E-5*numpy.identity(len(sigmaSplit))
rSmooth = numpy.linalg.cholesky(cov).dot(r.T).reshape(3,len(x),len(t))

images = []
fig = plt.figure(figsize=(4.2,3.0))
for ti in [0]+list(range(len(t))):
    for i,c in (2,1), (0,0), (1,2):
        plt.plot(x, YSplit[i] + rSmooth[i,:,ti], color='C'+str(c), label=u'Prediction',alpha=1)
    plt.axis([0,10,-10,10])
    plt.xlabel('t')
    plt.tight_layout()
    fig.canvas.draw()
    s, (width, height) = fig.canvas.print_to_buffer()
    images.append(numpy.array(list(s), numpy.uint8).reshape((height, width, 4)))
    fig.clf()

# Save GIF animation
fileOut = 'GaussianProcessDecomposition_Uncertainty.gif'
imageio.mimsave(fileOut, images[1:])

# Optimize GIF size
from pygifsicle import optimize
optimize(fileOut, colors=16)

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz CC0 1.0 Verzicht auf das Copyright zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

image/gif

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell21:35, 8. Sep. 2021Vorschaubild der Version vom 21:35, 8. Sep. 2021420 × 300 (381 KB)wikimediacommons>PhysikingerSmaller file size

Die folgende Seite verwendet diese Datei: